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a b s t r a c t

The analytical mathematical solutions of gas concentration and fractional gas loss for the diffusion of gas
in a cylindrical coal sample were given with detailed mathematical derivations by assuming that the dif-
fusion of gas through the coal matrix is concentration gradient-driven and obeys the Fick’s Second Law of
Diffusion. The analytical solutions were approximated in case of small values of time and the error anal-
yses associated with the approximation were also undertaken. The results indicate that the square root
relationship of gas release in the early stage of desorption, which is widely used to provide a simple and
fast estimation of the lost gas, is the first term of the approximation, and care must be taken in using the
square root relationship as a significant error might be introduced with increase in the lost time and
decrease in effective diameter of a cylindrical coal sample.

� 2014 Published by Elsevier B.V. on behalf of China University of Mining & Technology.

1. Introduction

Gas content in a coal seam is commonly used in coal mine
safety such as gas emission control and gas outburst control as well
as coal seam methane resource assessment and recovery applica-
tions. The gas content is usually measured with either an indirect
method or a direct method. The indirect method is based on empir-
ical correlations or laboratory derived sorption isotherm gas stor-
age capacity data. The direct method is based on observations of
gas release from newly obtained samples, and it typically involves
extracting a coal sample (often core sample), enclosing it in a
sealed container and measuring the volume of gas released. As
the direct method provides a fast in situ estimation of gas content,
it is widely used in the coal industry and coal seam gas industry.
With the direct method, the total gas content of a coal sample is
made of three parts: lost gas, measurable gas, and residual gas
[1–5]. The lost gas (Q1) is the gas lost from the sample, subsequent
to its being removed from its in situ position and prior to its

containment in an airtight desorption canister. The measurable
gas (Q2) is the gas desorbed at atmospheric pressure from the
non-pulverized coal sample. The residual gas (Q3) is the gas still
contained in coal at one atmospheric pressure. While Q2 and Q3

can be directly measured, Q1 has to be estimated.
The Q1 estimation method was firstly described in a paper writ-

ten by Bertard et al. [6]. It was stated in the paper that early in the
desorption process the volume of gas released from coal was pro-
portional to the square root of time, however no details were given
as how the relationship was theoretically derived except mention-
ing that it was based on kinetics of gas desorption from coal.

Since then this square root relationship has been widely used as
a standard lost gas estimation method, which is indicated by US
Report of Investigation 7767 (1973), Australian Standard AS
3980-1999 (1999) and Standards of China (2009) [7–9]. However,
the relationship has been found to be significantly dependent on
a number of factors such as sample retrieval time, physical charac-
ter of the sample, and the type of drilling fluid [10,11]. This raises
the questions of how the relationship was theoretically derived, its
validity, its applicable conditions, and its error.

To answer some of the questions and improve the accuracy of
estimation, this paper gives detailed derivations of a general math-
ematical solution for the diffusion of gas in a cylindrical coal, an
approximation solution, error analyses of the approximation and
its application in the Q1 estimation.

2095-2686/$ - see front matter � 2014 Published by Elsevier B.V. on behalf of China University of Mining & Technology.
http://dx.doi.org/10.1016/j.ijmst.2013.12.012

⇑ Corresponding author. Address: CSIRO Earth Science and Resource Engineering,
Kenmore 4069, Australia. Tel.: +61 7 3327 4443.

E-mail address: sheng.xue@csiro.au (S. Xue).

International Journal of Mining Science and Technology 24 (2014) 69–73

Contents lists available at ScienceDirect

International Journal of Mining Science and Technology

journal homepage: www.elsevier .com/locate / i jmst

http://crossmark.crossref.org/dialog/?doi=10.1016/j.ijmst.2013.12.012&domain=pdf
http://dx.doi.org/10.1016/j.ijmst.2013.12.012
mailto:sheng.xue@csiro.au
http://dx.doi.org/10.1016/j.ijmst.2013.12.012
http://www.sciencedirect.com/science/journal/20952686
http://www.elsevier.com/locate/ijmst


2. Diffusion equation and the initial and boundary conditions

Gas release from coal is considered to be the process of diffusion
in the coal matrix and desorption at surface. The diffusion through
the matrix is assumed to be concentration gradient-driven and
usually modeled using the Fick’s Second Law of Diffusion [12].
For a cylindrical sample, if one assumes that the cylinder length
is infinite, diffusion coefficient (D) is constant, and the gas concen-
tration (C) depends on the radial coordinate of the cylinder (r) only,
then the diffusion equation derived from the Fick’s Second Law of
Diffusion is given as

@C
@t
¼ 1

r
@

@r
rD
@C
@r

� �
¼ D

@2C
@r2 þ

1
r
@C
@r

 !
ð0 � r < a; t > 0Þ ð1Þ

The initial and boundary conditions can be expressed as:

C ¼ C0 ðt ¼ 0; 0 � r < aÞ ð2Þ

C ¼ C1 ðr ¼ a; t > 0Þ ð3Þ

C ¼ finite ðr ¼ 0; t > 0Þ ð4Þ

where a is the radius of the cylinder; C0 the initial uniform concen-
tration; and C1 the constant concentration at the surface of the cyl-
inder. Eq. (1) can be analytically solved with either the method of
separation of variables or the Laplace transform method. The latter
approach is adopted in this paper because it is also used to derive
approximations of the general solutions.

3. General solution

3.1. Solution of gas concentration

Application of the Laplace transform to Eq. (1) leads to the
subsidiary equation:

d2C

dr2 þ
1
r
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� q2C ¼ �C0

D
ð0 � r < aÞ ð5Þ

with the conditions

C ¼ C1=p ðr ¼ aÞ ð6Þ

C ¼ finite ðr ¼ 0Þ ð7Þ

where C ¼
R1

0 e�ptCdt is the Laplace transform of C; q2 = p/D; and p
the Laplace variable.

Eq. (5) is a modified Bessel equation which has two general
solutions: I0(qr) and K0(qr), where I0(x) and K0(x) are respectively
modified Bessel functions of the first and second kinds. As r ? 0,
K0(qr) ?1, it has no physical meanings and is discarded. There-
fore the solution of Eqs. (5)–(7) can be given as:

C ¼ ðC1 � C0Þ
p

I0ðqrÞ
I0ðqaÞ þ

C0

p
ð8Þ

To obtain the inversion of the Laplace transform of Eq. (8), the
method of Laplace transform of partial function is used. Here
f(p) = I0(qr), g(p) = pI0(qa) and g0(p) = I0(qa) + aqI1(qa)/2, where f(p)
and g(p) are polynomials in p. We need to find the zeros of
g(p) = 0 which consists of two parts: p = 0 and I0(qa) = 0.For the
zero p = 0, we have g0(p) = 1, f(p) = I0(0) = 1, so the contribution of
this term to C is C1 � C0. The other zeros of I0(qa) are at
p ¼ �Da2

n, where ±an, n = 1, 2, 3, . . ., are the roots of I0(aa) = 0.Using
the property of the Bessel functions, we have g0ðpÞjq¼ian

¼
ianaI1ðianaÞ=2 ¼ ianaiJ1ðanaÞ=2 ¼ �aanJ1ðanaÞ=2, the contribution
of p ¼ �Da2

n (or q = ian) to C is
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Using the property of the Bessel functions again, we have
I0ðianrÞ ¼ J0ðanrÞ. Therefore we obtain the inversion of the Laplace
transform of C as follows:

C ¼ C1 �
2ðC1 � C0Þ

a
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a
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where J0(x) is the Bessel function of the first kind of order zero; and
J1(x) the Bessel function of the first order, an, n = 1, 2, 3, . . ., are roots
of

J0ðaaÞ ¼ 0 ð11Þ

3.2. Solution of the fractional loss

Let the total gas volume in the sample at time t be Q, that is,
Q ¼

R a
0 C � pr2dr, and assume that Q is the Laplace transform of Q.

Using the derivative of the Bessel functions, we obtain:

Q ¼ 2paðC1 � C0Þ
p

I1ðqaÞ=q
I0ðqaÞ þ

pa2C0

p
ð12Þ

Again we use the method of Laplace transform of partial func-
tion to obtain the inversion of the Laplace transform. Here
f(p) = I1(qa)/q, g(p) = pI0(qa), and g0(p) = I0(qa) + aqI1(qa)/2. For the
zero p = 0, g0(p) = 1, f(p) = limq?0I1(qa)/q = a/2. So the contribution
of this term to Q is pa2(C1 - C0). The other zeros of I0(qa) are at
p ¼ �Da2

n , where ± an are the roots of I0(aa) = 0 and n = 1, 2, 3, . . .

By applying the property of the Bessel functions, we have
g0ðpÞjq¼ian

¼ ianaI1ðianaÞ=2 ¼ ianaiJ1ðanaÞ=2 ¼ �aanJ1ðanaÞ=2 and

f(p) = I1(iana)/ian = J1(ana)/an. Then the contribution of p ¼ �Da2
n

(or q = ian) to Qis �4pðC1 � C0Þ
P1

n¼1
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n
. Therefore we obtain:

Q ¼ pa2C1 � 4pðC1 � C0Þ
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n

ð13Þ

At t = 0, the initial total concentration is Q0 = pa2C0. The total des-
orbed gas Mt at time t is

Mt ¼ Q 0 � Q ¼ pa2ðC0 � C1Þ þ 4pðC1 � C0Þ
X1
n¼1

expð�Da2
ntÞ

a2
n

At t =1, the total gas that may be released is:

M1 ¼ lim
t!1

Mt ¼ pa2ðC0 � C1Þ ð14Þ

Thus we obtain the fractional loss as

Mt

M1
¼ 1�

X1
n¼1

4
a2

na2 expð�Da2
ntÞ ð15Þ

4. Convergence analysis of the fractional loss

Although Eq. (15) is an analytical solution, it contains infinite
number of exponential terms with the roots of Bessel function in-
volved. In practical applications, one has to cut off to finite number
of terms. To do this, the convergence of Eq. (15) needs to be stud-
ied. If we set the cut-off error to be 10�2 �

ffiffiffiffiffiffi
Dt
p

=a , the minimum
number of terms required to obtain this precision can be calcu-
lated. Fig. 1 shows the variation of this minimum number of terms
with the value of Dt/a2. As can be seen in Fig. 1, with the decrease
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