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a b s t r a c t 

The present paper examines the effective macroscopic behavior of a microscopically damaged interface 

between an infinitely long piezoelectric layer and a piezoelectric half-space under antiplane deformation. 

The interface is modeled as containing a periodic array of micro-cracks. The lengths and the positions of 

the micro-cracks on a period interval of the interface are randomly generated. The micro-statistical model 

is formulated in terms of hypersingular integral equations and used to investigate in detail the influences 

of the material constants of the piezoelectric layer and the half-space and the width of the layer on the 

effective properties of the interface. 

© 2016 Elsevier Ltd. All rights reserved. 

1. Introduction 

The macro-level generalized spring-like model for a weak inter- 

face � between two piezoelectric materials denoted by 1 and 2 is 

given by the interfacial conditions 

σ (1) • n = σ (2) • n = a • ( u 

(1) − u 

(2) ) + b (φ(1) − φ(2) ) 

D 

(1) • n = D 

(2) • n = c • ( u 

(1) − u 

(2) ) + h (φ(1) − φ(2) ) 

}
on �, 

(1) 

where n is the unit normal vector to � pointing into material 1, u 

( i ) 

and σ( i ) are respectively the displacement and the stress in mate- 

rial i, φ( i ) and D 

( i ) are respectively the electrical potential and the 

electrical displacement in material i and the scalar h , the vectors b 

and c and the second rank tensor a are tensorial quantities char- 

acterizing the effective properties of �. 

The spring-like model has been proposed and used by many 

researchers for analyzing weak interfaces in elastic layered mate- 

rials ( Benveniste and Miloh, 2001; Hashin, 1991; Jones and Whit- 

tier, 1967; López-Realpozo et al., 2011; Pilarski and Rose, 1988 and 

Rokhlin and Wang, 1991 ) as well as in piezoelectric layered mate- 

rials ( Li and Lee, 20 09a, 20 09b, 2010; Wang and Pan, 2007; Wang 

et al., 2007 and Wang and Sudak, 2007 ). For the case of piezoelec- 

tric layered materials, most (if not all) of the existing papers made 

the assumption that no coupling exists between the displacement 
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and electrical potential jumps in the interfacial conditions, that is, 

they assumed that b = 0 and c = 0 in (1) . The validity of such an 

assumption may be checked by using micro-models to estimate the 

effective properties of microscopically damaged interfaces. 

There are, however, few research papers on micro-analyses for 

estimating the effective properties of micro-damaged interfaces be- 

tween dissimilar materials. Fan and Sze (2001) studied the ef- 

fective electrical behavior of a micro-cracked interface between 

dielectric materials by using a finite-element based three-phase 

model. More recently, Wang et al. (2012, 2014, 2015) proposed a 

micro-statistical model for estimating the effective stiffness of a 

micro-damaged interface between dissimilar materials under elas- 

tostatic deformations. 

The current paper adopts the micro-statistical approach to an- 

alyze the effective properties of a micro-damaged interface be- 

tween an infinitely long piezoelectric layer and a piezoelectric half- 

space under antiplane deformation. As in Wang et al. (2012, 2014, 

2015) , the interface is modeled as containing a periodic array of 

micro-cracks which are taken to be either electrically impermeable 

or permeable. The lengths and the positions of the micro-cracks 

on a period interval of the interface are randomly generated. The 

boundary conditions on the micro-cracks are expressed in terms 

of hypersingular integral equations which are solved numerically. 

Once the hypersingular integral equations are solved, quantities 

describing the effective properties of the interface can be readily 

estimated. The influences of the material constants of the piezo- 

electric layer and the half-space and the width of the layer on the 

effective properties of the interface are examined in detail. 
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Fig. 1. A sketch of the geometry of the piezoelectric bimaterial for M = 3 . 

The problem under consideration here may be of practical in- 

terest as piezoelectric thin film structures are widely used in mi- 

croelectronics ( Park et al., 2014, 2010 and Trolier-McKinstry and 

Muralt, 2004 ). Such a structure is formed by coating a thin layer 

of piezoelectric material on a substrate of dissimilar material (see 

Tateyama et al., 2009 ). The interface between the thin layer and 

the substrate may be damaged by a distribution of micro-cracks. 

For a simpler mathematical analysis of the layered piezoelectric 

structure, the interface may be modeled using (1) . Unless the edge 

of the layer is very far away from the micro-cracks, its effects on 

the effective properties of the micro-cracked interface cannot be 

ignored in the modeling of the interface. 

2. The problem and basic equations 

With reference to a Cartesian coordinate system Ox 1 x 2 x 3 , con- 

sider a thin piezoelectric layer occupying the region 0 < x 2 < h 

( h is a positive constant) bonded to a piezoelectric half-space in 

the region x 2 < 0. The layer and the half-space are occupied pos- 

sibly dissimilar materials. The interface x 2 = 0 between the thin 

layer and the half-space is microscopically damaged. The geome- 

tries of the piezoelectric bimaterial are independent of the spatial 

coordinate x 3 . 

The micro-damaged interface is modeled as containing a peri- 

odic array of micro-cracks. Specifically, a period interval of the in- 

terface contains M arbitrarily located micro-cracks of possibly dif- 

ferent lengths. In the region 0 < x 1 < L , x 2 = 0 , the tips of the 

m -th micro-cracks are given by ( a ( m ) , 0) and ( b ( m ) , 0), where a ( m ) 

and b ( m ) ( m = 1 , 2, ���, M ) are real numbers such that 0 < a (1) 

< b (1) < a (2) < b (2) < · · · < a ( M ) < b ( M ) < L . The micro-cracks 

on the remaining part of the interface are given by a (m ) + nL < 

x 1 < b (m ) + nL for m = 1 , 2 , . . . , M and n = ±1 , ±2 , . . . , that is, the 

remaining parts of the interface are periodically distributed repli- 

cas of the region 0 < x 1 < L, x 2 = 0 . Refer to Fig. 1 for a geometri- 

cal sketch of the piezoelectric bimaterial having three micro-cracks 

( M = 3 ) over a period interval of the interface. 

The damage ratio (or micro-crack density) ρ of the interface is 

defined by 

ρ = 

1 

L 

M ∑ 

k =1 

(b (k ) − a (k ) ) . (2) 

The piezoelectric bimaterial undergoes an antiplane deforma- 

tion with electrical poling in the x 3 direction. The only non-zero 

component of the Cartesian displacement is u 3 which is a function 

of only x 1 and x 2 . The antiplane stresses σ 3 k and the electric dis- 

placements D k are given by (see, for example, Auld, 1973 and Li 

and Lee, 2010 ) 

σ3 k = c 44 (x 2 ) 
∂u 3 

∂x k 
+ e 15 (x 2 ) 

∂φ

∂x k 
, 

D k = e 15 (x 2 ) 
∂u 3 

∂x k 
− ε11 (x 2 ) 

∂φ

∂x k 
, (3) 

where φ is the electrical potential which is also a function of only 

x 1 and x 2 , and c 44 ( x 2 ), e 15 ( x 2 ) and ε11 ( x 2 ) are respectively the elas- 

tic moduli, piezoelectric coefficient and dielectric coefficient of the 

piezoelectric bimaterial given by 

( c 44 ( x 2 ) , e 15 ( x 2 ) , ε11 ( x 2 ) ) 

= 

{ 

(
c ( 

1 ) 
44 

, e ( 
1 ) 

15 
, ε( 1 ) 

11 

)
for 0 < x 2 < h, (

c ( 
2 ) 

44 
, e ( 

2 ) 
15 

, ε( 2 ) 
11 

)
for x 2 < 0 , 

(4) 

with c (n ) 
44 

, e (n ) 
15 

and ε(n ) 
11 

(n = 1 , 2) being suitably given constants. 

According to the law of conservation of momentum and the 

Gauss law of electric flux, the antiplane deformation of the 

piezoelectric bimaterial is governed by the partial differential 

equations 

∂ 2 

∂ x k ∂ x k 
(c 44 (x 2 ) u 3 + e 15 (x 2 ) φ) = 0 , 

∂ 2 

∂ x k ∂ x k 
(e 15 (x 2 ) u 3 − ε11 (x 2 ) φ) = 0 . (5) 

Note that the Einsteinian convention of summing over repeated 

indices applies for lower case Latin subscripts which run from 1 

to 2. 

For the antiplane deformation, the generalized spring-like 

model in (1) for the micro-cracked interface x 2 = 0 between the 

piezoelectric layer and the piezoelectric half-space can be re- 

written as [
σ32 (x 1 , 0 

+ ) 
D 2 (x 1 , 0 

+ ) 

]
= 

[
σ32 (x 1 , 0 

−) 
D 2 (x 1 , 0 

−) 

]
= 

[
k 11 k 12 

k 21 k 22 

][
�u 3 (x 1 ) 
�φ(x 1 ) 

]
for − ∞ < x 1 < ∞ , (6) 

where �u 3 (x 1 ) = u 3 (x 1 , 0 
+ ) − u 3 (x 1 , 0 

−) , �φ(x 1 ) = φ(x 1 , 0 
+ ) −

φ(x 1 , 0 
−) and k ij are coefficients characterizing the effective piezo- 

electric properties of the interface. 

The problem of interest here is to estimate the effective prop- 

erties k ij of the interface by taking into consideration the details of 

the interfacial micro-cracks. 

For the macro-level model in (6) , the interfacial micro-cracks 

are taken to be electrically impermeable. Thus, there is a jump in 

the electrical potential φ across the interface. 

However, if the interfacial micro-cracks are electrically perme- 

able, the electrical potential φ is continuous on the interface. For 

an electrically permeable interface, the interfacial conditions in 

(6) for the generalized spring-like model should be modified to 

become 

σ32 (x 1 , 0 

+ ) = σ32 (x 1 , 0 

−) = k �u 3 (x 1 ) 
D 2 (x 1 , 0 

+ ) − D 2 (x 1 , 0 

−) = 0 

φ(x 1 , 0 

+ ) − φ(x 1 , 0 

−) = 0 

} 

for − ∞ < x 1 < ∞ , 

(7) 

where k is the effective stiffness of the interface to be 

estimated. 

3. Hypersingular integral formulation 

For mathematical convenience, we introduce the generalized 

displacements U I and stresses S Ik ( I = 1 , 2 ; k = 1 , 2 ) 

U 1 = u 3 , U 2 = φ, S 1 k = σ3 k , S 2 k = D k , 
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