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a b s t r a c t 

Cracks in kerogen-rich shales and other brittle rock-like materials have a tremendous impact on their 

elastic properties and strength. In this paper, we investigate the effective mechanical properties of shale 

plates with pre-existing cracks. We employ the extended finite element method (XFEM) to investigate 

a pre-cracked medium with an elastic, isotropic and brittle shale matrix. We show how the mechanical 

properties of the orthotropic shale plates are dependent on the crack density and the standard devia- 

tion of crack angles. Both the Young’s modulus and the Poisson’s ratio of the cracked media exhibit a 

linear dependence on the standard deviation of crack angles, in contrast to the nonlinear dependence of 

the strength on the angle deviation. Finally, we propose mechanical models to capture the relationship 

between the mechanical properties and the distribution characteristics of pre-existing cracks in shales. 

These phenomenological models could be applied to estimate the fracking behavior of shales in engi- 

neering practice. 

© 2016 Elsevier Ltd. All rights reserved. 

1. Introduction 

Shale gas and shale oil are changing the world’s energy market. 

One key technology that exploits these resources is hydraulic frac- 

turing, more commonly known as fracking ( Bažant et al., 2014 ). To 

achieve effective fracking, engineers must thoroughly understand 

the macroscopic mechanical properties of kerogen-rich shales, 

including their elastic properties and fracture strength. Current 

knowledge about these elastic properties has been obtained from 

the interpretation of seismic waves propagating through a shale 

formation or the laboratory mechanical tests of shale drill cores. 

Ideally, we desire to construct a sound physical connection be- 

tween the microstructure characteristics of shales and the macro- 

scopic properties of the media, especially the pre-existing cracks in 

the media. Typically, shales display significant anisotropy ( Sarker 

and Batzle, 2010; Sondergeld and Rai, 2011; Sone and Zoback, 

2013a ) and are brittle and transversely isotropic materials, with 

a symmetry axis vertical to their sedimentary plane ( Vasin et al., 

2013 ). The elastic anisotropy is partly caused by the preferred ori- 

entation of mineral components ( Lonardelli et al., 2007 ). To ad- 

dress this anisotropy, theoretical works have been developed to 

predict effective elastic properties ( Hornby et al., 1994; Lonardelli 

et al., 20 07; Sayers, 20 05; Vasin et al., 2013 ). Because natural 
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fractures are common in shales and generally have a dominant 

trend ( Gale et al., 2007 ), they largely contribute to the anisotropy 

( Vernik, 1993 ). Following fracking in shale formations, complex 

crack networks may be present together with the natural cracks; 

this has been regarded as a critical factor for economic or prospec- 

tive production from shale reservoirs ( Gale et al., 2014; Walton and 

McLennan, 2013 ). From this aspect, the interaction of fracking with 

pre-existing cracks in shales has attracted attention from the fields 

of solid mechanics, geophysics and composite materials in the past 

decades. 

Theoretical methods have been developed to determine the ef- 

fective elastic moduli of isotropic solids containing randomly ori- 

entated cracks, such as the self-consistent method ( Budiansky and 

O’Connell, 1976 ), the general self-consistent method ( Huang et al., 

1994 ), the differential method ( Hashin, 1988; Zimmerman, 1985 ), 

and the Mori-Tanaka method ( Benveniste, 1987 ). In parallel, nu- 

merical methods have been broadly applied to calculate the effec- 

tive mechanical properties of solids with pre-existing cracks, such 

as the finite element method ( Makarynska et al., 2008; Shen and 

Li, 2004 ) and the boundary element method ( Huang et al., 1996; 

Renaud et al., 1996 ). The differential method provides the clos- 

est estimation at low crack density, whereas the generalized self- 

consistent method or the non-interaction solution is more accurate 

than the other methods at high crack density. 

The aforementioned methods all use a single parameter – the 

crack density – to characterize the random crack network and 
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ignore other important effects, such as the crack orientation and 

crack length distribution. Therefore, existing theories are not ap- 

plicable when cracks are aligned with orientation distribution. 

Some approximations have been suggested to calculate the elas- 

tic moduli of these types of materials based on the methods 

for isotropic cracked solids. For example, Hoenig (1979) worked 

through two special cases, planar transverse isotropy and cylin- 

drical transverse isotropy with circle cracks, and proposed formu- 

las for the elastic moduli. Some authors ( Feng et al., 2003; Gure- 

vich, 2003; Huang et al., 1996; Laws and Brockenbrough, 1987; 

Thomsen, 1995; Wang et al., 20 0 0; Zhan et al., 1999 ) later in- 

vestigated similar situations using different methods. Except for 

in the case of the aligned crack situation, the crack angle effect 

is neglected, and the cracked solids are then regarded as macro- 

scopic isotropic materials in the mentioned works. To the best 

of the authors’ knowledge, the crack angle effect on the elas- 

tic properties was first analyzed by Sevostianov and Kachanov 

(2001) . The authors showed that the scatter of crack orientation 

has a pronounced effect on the effective properties of plasma- 

sprayed ceramic coatings. They developed a quantitative charac- 

terization for the microstructures of the coatings using a proba- 

bility density function ( Sevostianov et al., 2004 ). Later, Giordano 

and Colombo (20 07a, 20 07b) dealt with a similar situation and 

derived a theory for the elastic characterization of cracked solids 

based on a homogenization technique. Kushch et al. (2009) de- 

rived a series solution for the effective elastic moduli of anisotropic 

cracked materials. These works reported the crack angle effect on 

the elastic moduli at different crack densities. However, their re- 

sults failed to explicitly and directly clarify the relationship be- 

tween the mechanical properties and the crack angle distribution 

parameters. 

In addition, the aforementioned works only calculated the ef- 

fective elastic moduli. For shale fracking design, the effective ten- 

sile strength is also a very important mechanical parameter. The 

fracture strength is affected by many factors, such as pressure ( Lin, 

1983 ) and lamination ( Mokhtari et al., 2014 ). A strong correla- 

tion between the shale composition and the intact rock strength 

has been reported, particularly between the organic matter and 

the strength ( Chong et al., 1982; Sone and Zoback, 2013b ). Eseme 

et al. (2007) discovered a logarithmic empirical relation between 

the tensile strength and temperature. Shales’ fracture strength is 

also reduced drastically by their cracks, which was demonstrated 

experimentally ( Gale and Holder, 2008 ). Zhang et al. (1998) the- 

oretically investigated the effects of the crack-length distribution 

and ligament sizes in the case of strongly interacting collinear 

cracks. Ma et al. (2005) used their numerical method to ex- 

amine the influences of the crack distribution on the tensile 

strength. They found that the tensile strength exhibited a pro- 

nounced dependence on the distribution of crack orientations and 

crack locations as well as on the crack density. However, it ap- 

pears that no study has thus far discovered the relationship be- 

tween the general characterization of crack angles and the frac- 

ture strength for shales. Therefore, there is a compelling need 

to investigate the crack angle influence on the shales’ fracture 

strength. 

In this paper, we examine the effects of crack angles on the me- 

chanical properties of elastic brittle cracked shale plates. We em- 

ploy numerical simulations to clarify the relationship between the 

crack angle distribution and the effective Young’s modulus, Pois- 

son’s ratio, shear modulus and tensile strength. Furthermore, we 

propose approximation formulas that capture trends revealed in 

our numerical simulations. Section 2 describes the assumptions 

employed in this study and the model for effective mechanical 

properties. Section 3 presents the numerical results from extended 

finite element method (XFEM) simulations. Section 4 contains final 

discussions and concluding remarks. 

2. Problem description 

2.1. Crack distribution 

As a representative shale matrix body, we consider an initially 

isotropic brittle linear elastic plate of area A with Young’s modulus 

E , Poisson’s ratio ν and tensile strength σ s . This plate is permeated 

by N arbitrarily oriented straight cracks that do not intersect and 

whose centers are distributed homogenously and randomly with- 

out overlapping. Each crack can be characterized by two variables: 

crack length l i and crack angle θ i (the angle between the crack 

plane and axis x 1 ), as shown in Fig. 1 . In the present work, we as- 

sume that these two random variables obey a truncated Gaussian 

distribution. The crack length l i and the crack angle θ i lie within 

the intervals l i ∈ ( 0 , + ∞ ) and θ i ∈ (0, π ), respectively. Their proba- 

bility density functions can be calculated by the following function 

( Johnson et al., 1995 ): 
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where φ is the standard Gaussian probability density function, � is 

the cumulative distribution function, μ is the expectation, s is the 

standard deviation, and c and d bound the region of interest. We 

can calculate the expectation and standard deviation of the crack 

length or the crack angle by the following formulas ( Johnson et al., 

1995 ): 
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(2b) 

and herein, the truncated Gaussian distribution random variables 

describing the cracks are numerically simulated using the method 

proposed by Chopin (2010) . 

The assumed distributing cracks can be described by four dis- 

tribution characteristic parameters, i.e., crack length expectation 

μtL , crack length standard deviation s tL , crack angle expectation 

μtA and crack angle standard deviation s tA . To simplify the anal- 

ysis, we should first reduce the variables of the problem. Accord- 

ing to the basic definitions of crack density ξ , crack length expec- 

tation μtL and crack length standard deviation s tL , we may con- 

nect ξ with μtL and s tL with the following derivation. The ratio 

of cracked surface ξ is defined as ξ = 

1 
A 

∑ N 
i =1 ( 

l i 
2 ) 

2 , where A is 

the area of the cracked plate, N the total number of cracks, and 

l i the length of the i -th crack for i = 1, …, N. It is straightforward 

to write the crack length expectation and its standard deviation as 

μtL = 

1 
N 

∑ N 
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√ 

1 
N 

∑ N 
i =1 ( l i − μtL ) 

2 
, respectively. We may 

reformulate the definition for s tL , as 
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