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a b s t r a c t 

We present a new mechanical model of interatomic bonds, which can be used to describe the elastic 

properties of the carbon allotropes, such as graphite, diamond, fullerene, and carbon nanotubes. The in- 

teratomic bond is modeled by a hyperboloid–shape truss structure. The elastic characteristics of this bond 

are determined. Previous known structural models also used elastic elements (beams, trusses) to simu- 

late a carbon bond. However unlike them our model satisfies to the correct ratio of the longitudinal and 

lateral stiffness, observed from the previous experimental and theoretical results. Parameters of the bond 

in application for graphene and diamond were determined. 

© 2016 Elsevier Ltd. All rights reserved. 

1. Introduction 

Mechanical properties of carbon nanostructures have been ex- 

tensively studied by scientists all over the world since the mid- 

dle of the twentieth century. The elastic properties of two most 

common allotropes of carbon: diamond and graphite were experi- 

mentally determined in works McSkimin and Andreatch Jr (1972) ; 

McSkimin and Bond (1957) and Blakslee et al. (1970) , respectively. 

Due to the unique crystal structure, diamond and lonsdaleite are 

considered as the most durable of the existing materials. At the 

same time it was predicted that graphite should also have an out- 

standing tensile strength in the basal plane, but the plane orthog- 

onal to the base has significantly lower tensile strength ( Blakslee 

et al., 1970; Bosak et al., 2007 ). Discovery of such materials as 

fullerenes ( Kroto et al., 1985 ), carbon nanotubes ( Iijima et al., 

1991 ), and graphene ( Geim and Novoselov, 2007 ) at the turn of 

the present century, warmed up the interest of the scientific com- 

munity to the properties of carbon and the structures it is capable 

to form. 

A key point in the study of the carbon allotropes and its proper- 

ties at the micro level is the choice of a model describing the inter- 

atomic bonds. The ab initio methods developed in the past decade 

due to the advances of quantum physics and chemistry are widely 

used to model carbon nanostructures ( Bichoutskaia et al., 2006; 

Kudin et al., 2001; Yanovsky et al., 2009; Zhou et al., 2001 ). Ap- 

parently, they are the most precise and predictively valid methods, 
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but due to the high complexity and high computational costs, they 

are rarely used to describe even relatively small nanostructures, 

not to mention the objects of the size of a few micrometers. Vari- 

ous particle dynamics methods to simulate carbon nanostructures 

were applied in order to decrease the simulation time in compar- 

ison to ab initio approaches: molecular dynamics ( Golovnev et al., 

2008; Jin and Yuan, 2003; Reddy et al., 2006; Yao et al., 2001 ) and 

molecular mechanics ( Korobeynikov et al., 2014 ). These methods 

suggest that atoms interact as material points through the empiri- 

cal interaction potentials. In turn, these potentials are partly based 

on the quantum mechanical calculations. Such approaches reduce 

the problem to the solution of the ordinary differential equations 

at each time step. In addition, they require significantly less com- 

putational cost than ab initio methods. 

At the same time it was shown ( Berinskii and Krivtsov, 2010; 

Zhang et al., 2002 ) that a number of commonly used interaction 

potentials to simulate the graphene, graphite and diamond bonds 

( Allinger et al., 1989; Brenner et al., 2002; Tersoff, 1988 ) do not 

meet the experimentally determined elastic moduli. Furthermore, 

the empirical interaction potentials depending on the position of 

a number of particles include a large number of parameters with 

no clear physical meaning. At the same time they are inferior to 

the pairwise potentials of the Lennard-Jones or Morse type that 

depend only on the difference between the position vectors of the 

interacting particles. However, the classical pairwise potentials do 

not adequately describe the majority of covalent structures, which 

include carbon allotropes. Such structures are characterized by a 

low crystal packing density and oriented interatomic bonds. The 

use of a pairwise potential leads to the maximizing of a packing 

density that in turn causes the collapsing of a model. A possible 
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solution is to take the rotational degrees of freedom for the carbon 

atoms into account ( Grekova and Zhilin, 2001; Ivanova et al., 2007; 

Vasiliev et al., 2010 ) and develop a generalized moment (torque) 

potentials ( Berinskii et al., 2007; Kuzkin and Krivtsov, 2011; Kuzkin 

and Asonov, 2012; Tovstik and Tovstik, 2012 ) for simulations. In 

these works the atoms are assumed to be the solid bodies, not 

just the material points, and interaction between them is described 

both by the forces and the torques. It gives the interatomic bond 

additional lateral stiffness, providing the desired angle between 

the bonds in the lattice. Torque potentials combine the relative 

simplicity (they are, in fact, pairwise) and versatility. They inde- 

pendently determine the longitudinal, lateral, torsional and flexu- 

ral bond rigidity. On the one hand it gives the freedom to choose 

the parameters of the simulation. On the other hand, if the lon- 

gitudinal and lateral stiffness can be unambiguously determined 

from the experimentally measured elastic characteristics, the flex- 

ural and torsional bond stiffness depends on the couple-stress ten- 

sor components of the crystal lattice, for which to date there is no 

experimental data. On the macrolevel taking the rotational degrees 

of freedom into account allows to construct a generalised model 

of material ( Eremeyev et al., 2012; Forest et al., 20 0 0; Maugin and 

Metrikine, 2010 ). 

The foregoing approaches can be attributed to the discrete 

methods, meaning that the crystal lattice is considered to be a 

set of interacting particles. However, there are some other ap- 

proaches that are closer to the field of the classical mechanics. 

Such approaches are so–called structural or discrete–continuous 

methods ( Cheng et al., 2009; Goldstein et al., 2008; Kalamkarov 

et al., 2006 ). The most straightforward example of the structural 

method is a covalent bond modeled by the solid deformable rod 

( Li and Chou, 2003; Tserpes and Papanikos, 2005 ). The distinc- 

tion of these methods from the discrete ones consists in that the 

interatomic bonds are modeled as a deformable body or a con- 

struction. Besides the perception simplicity, these approaches have 

one more important advantage. They can be implemented in stan- 

dard computing packages based on the finite–element, boundary–

element, or finite difference methods. These methods can be con- 

sidered as the bridges between the parameters of atomistic and 

continual models of the material. E.g. the classical elastic contin- 

ual model has to be isotropic in case of graphene ( Berinskii and 

Borodich, 2013a ) and therefore has only two independent parame- 

ters. 

The interatomic bond energy can be specified by a interatomic 

potential as a function of the distance between the nearest inter- 

acting atoms and the angles between the adjacent bonds in the 

lattice. The parameters of the potentials are chosen based on the 

elastic properties of the entire lattice. At the same time, the bind- 

ing energy is equivalent to the energy of the rod deformation that 

depends on its length and its angular deflection. By comparing the 

energies one can determine the parameters required for the rod 

model. In particular, if the Euler–Bernoulli model of the rod is con- 

sidered, then the parameters are Young’s modulus of the bond and 

its diameter. More complex models can be used, e.g. the Timo- 

shenko beam. However in this case an additional parameter ap- 

pears namely the Poisson ratio of the rod. Its exact value cannot be 

determined ( Berinskii et al., 2014 ). The circular section rod model 

imposes some limitations on the properties of carbon bond, but 

at the same time it allows to determine not only the longitudi- 

nal and transverse, but also the torsional and flexural stiffness us- 

ing only two parameters. These parameters are necessary to deter- 

mine the bending stiffness of a crystal lattice of the graphene sheet 

( Berinskii et al., 2014 ). Modelling of the graphene layer deforma- 

tion with regard to the available experimental data shows that the 

ratio of the lateral bond stiffness C 2 between the carbon atoms to 

the longitudinal stiffness C 1 is approximately 1/2 ( Ivanova et al., 

2007 ). However, the rod bond model at the reasonable parameters 

Fig. 1. 3D model of the carbon interatomic bond. 

give a much lower value of the flexural rigidity. Thus, the value of 

1/2 can only be achieved if the thickness of the rod is close to its 

length and the material of the rod should have the negative Pois- 

son ratio ( Berinskii and Borodich, 2013b ). So, an important issue is 

to find a relatively simple mechanical model that allows for such a 

ratio of stiffness. 

There are other conclusive structural models of the graphene 

and nanotubes, e.g. ( Goldstein et al., 2008; Odegard et al., 2002 ). 

However, we have shown earlier ( Berinskii and Borodich, 2013b ) 

that they cannot meet the required stiffness ratio. 

In this paper, the carbon bond model is built on the symmetry 

properties of the hyperboloid. These properties allow it to achieve 

a high ratio of the lateral and longitudinal stiffness, therefore the 

hyperboloid shapes are widely used in the engineering to cre- 

ate lightweight constructions consisting of straight beams that are 

known for being able to carry a large load while achieving a low 

use of raw materials. In particular, the first hyperboloid tower was 

built by Russian engineer V.G. Shukhov in Nizhny Novgorod (1896) 

( English, 2005 ). Being widely demanded in architecture and engi- 

neering, such models still haven’t found a wide use in micro- and 

nanomechanics. It appears that the analogy drawn from the macro 

level will allow to describe correctly the properties of carbon ma- 

terials at the micro level. 

2. A hyperboloid carbon model: compression and tension 

stiffness 

We model a carbon bond as a rigid structure, which is con- 

structed as follows. Let us introduce the unit vectors of Cartesian 

basis i, j, k . Here and after the vector and tensor values are de- 

noted by bold letters. Unit vector i determines a direction of the 

bond, unit vectors j and k determine a plane perpendicular to the 

bond. Next, consider a cylinder with an axis coinciding with the 

bond direction, and with the height equal to its length. Bases of 

the cylinder have a radius of R = b/ 2 , where b is a bond width. 

Then place a set of N truss elements with stiffness k along the 

generatrices of the cylinder so that they are evenly distributed over 

the cylinder surface. We then rotate one of the bases of the cylin- 

der around its axis until it makes an angle γ . Then the trusses 

will rest on the one-sheet hyperboloid surface connecting the two 

cylinder bases ( Figs. 1 and 2 ). Vectors c n connecting the start and 

the end point of the truss members of hyperboloid may be repre- 

sented as 

c n 
def = −R s n + a i + R ̃

 s n , (1) 

where 

s n 
def = P ( 

2 nπ

N 

i ) ·j , ˜ s n 
def = P (γ i ) ·s n ; n = 1 , 2 , . . . , N; (2) 
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