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a b s t r a c t 

This article presents an application of a recently developed continuum homogenization theory, inspired 

by the classical work of Irving and Kirkwood, to the homogenization of plane waves in layered linearly 

elastic media. The theory explicitly accounts for the effects of microscale dynamics on the macroscopic 

definition of stress. It is shown that for problems involving high-frequency wave propagation, the macro- 

scopic stress predicted by the theory differs significantly from classical homogenized stress definitions. 

The homogenization of plane waves is studied to illustrate key aspects and implications of the theory, 

including the characteristics of the homogenized macroscopic stress and the influence of frequency on 

the determination of an intermediate asymptotic length scale. In addition, a method is proposed for pre- 

dicting the homogenized stress field in a one-dimensional bar subjected to a frequency-dependent forced 

vibration using only knowledge of the boundary conditions and the material’s dispersion solution. Fur- 

thermore, it is shown that due to the linearity of the material, the proposed method accurately predicts 

the homogenized stress for any time-varying displacement or stress boundary condition that can be ex- 

pressed as a sum of time-periodic signals. 

Published by Elsevier Ltd. 

1. Introduction 

The properties of heterogeneous materials are often character- 

ized in an average or effective sense. This is a particularly relevant 

approach when the physical length scale of the material hetero- 

geneity is much smaller than the macroscopic body under consid- 

eration. Continuum homogenization theories represent one class 

of methodologies capable of predicting effective material proper- 

ties from knowledge of the microstructural response. These theo- 

ries typically assume that the macroscopic material behavior and 

properties can be defined through volume averages of appropri- 

ate microscopic quantities. For example, the seminal paper by 

Hill (1972) proposes relations between the deformation gradient, 

stress, and a work-like quantity across scales through volume av- 

erages over the microscale. Computational homogenization, which 

typically uses the finite element method in a multiscale setting, 

has leveraged these so-called Hill-Mandel relations with success 

in modeling a variety of heterogeneous materials as homogenized 
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media ( Feyel and Chaboche, 20 0 0; Kouznetsova et al., 2001; Miehe 

et al., 2002; Sengupta et al., 2012 ). 

While the Hill-Mandel homogenization approach is reasonable 

and has yielded good results in a variety of applications, it is by 

no means the only way in which homogenization relations may 

be defined. Recently, a continuum homogenization theory was pro- 

posed in which only the principal extensive quantities (mass, mo- 

mentum, and energy) at a given macroscopic point are defined as 

weighted averages of their microscopic counterparts in a neigh- 

borhood around that point ( Mandadapu et al., 2012 ). This the- 

ory is motivated by the seminal work of Irving and Kirkwood 

(1950) , which proposed an upscaling method from atomistics to 

continuum; as such, it is henceforth referred to as the continuum 

Irving-Kirkwood theory. The theory is appealing in its reliance on 

a minimal number of assumptions, its natural extension to ther- 

mal processes, and its flexibility in accommodating a richer spec- 

trum of microscopic deformations compared to the Hill-Mandel 

theory ( Mercer et al., 2015 ). In fact, it is shown in Mandadapu et al. 

(2012) that the Hill-Mandel theory is recovered from the contin- 

uum Irving-Kirkwood theory under an additional set of assump- 

tions. 

For the purpose of this work, of particular interest is the def- 

inition of homogenized stress in the continuum Irving-Kirkwood 
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theory. As shown in Mandadapu et al. (2012) , the homogenized 

stress depends on the volume-averaged microscopic stress as well 

as a kinetic stress term which accounts for the effect of micro- 

scopic dynamics on the macroscopic stress. This kinetic stress term 

depends on the microscopic velocity fluctuations about the macro- 

scopic velocity at a given point akin to the dependence of pressure 

on velocity fluctuations in ideal fluids. These fluctuations are neg- 

ligible when the wavelengths generated by the imposed loading 

are long compared to the representative size of the material mi- 

crostructure. However, as these wavelengths become shorter, the 

contribution of the kinetic stress to the overall stress becomes in- 

creasingly dominant. Therefore, a practical problem in which the 

continuum Irving-Kirkwood theory is indispensable is the homog- 

enization of waves propagating through heterogeneous elastic me- 

dia at high frequency, where the term “high frequency” is used to 

indicate a frequency which generates wavelengths whose size is 

on the order of the characteristic microstructural length scale for 

a material. The presence of band gaps in these materials is one 

of the primary reasons for the recent interest in wave propagation 

in composites and heterogeneous media ( Nemat-Nasser and Srivas- 

tava, 2011; Shen and Cao, 20 0 0; Sheng et al., 2007 ). 

To better understand the effects of microscale dynamics on the 

homogenized stress within the context of the continuum Irving- 

Kirkwood theory, this work relies on analytical solutions of time- 

harmonic plane wave propagation in infinite media consisting of 

alternating layers of isotropic linearly elastic material. It is shown 

that for waves at high frequency, the kinetic stress term becomes 

dominant, thus establishing its importance in the determination of 

the macroscopic stress at a given point. Additionally, the existence 

of an intermediate asymptotic scale is demonstrated, and is shown 

to depend on both the microstructural length scale and the wave- 

lengths induced by the loading. These scales characterize the size 

of the averaging region required to yield a converged macroscopic 

stress. 

The utility of the continuum Irving-Kirkwood theory is greatest 

if it can be applied to predict the homogenized stress response for 

a given initial boundary-value problem. To this end, such an initial 

boundary-value problem is posed and a methodology is developed 

for predicting the homogenized stress field induced by the bound- 

ary conditions. This methodology does not rely on a macroscopic 

mesh, as in the FE 2 approach, since a macroscopic mesh is not ca- 

pable of efficiently resolving the propagation of the microstructure- 

sized wavelengths through the system. Rather, the methodology 

exploits a priori knowledge of the analytical solution of plane wave 

propagation at a particular frequency, as well as the nature of the 

applied loading, to accurately predict the homogenized stress field. 

The organization of this article is as follows: Section 2 summa- 

rizes the important aspects of the continuum Irving-Kirkwood the- 

ory developed in Mandadapu et al. (2012) . In Section 3 , the analyti- 

cal solutions for time-harmonic wave propagation in layered media 

in one and two dimensions are reviewed, and the salient aspects 

of the procedure for computing the homogenized stress response is 

these systems are presented. Section 4 presents a boundary-value 

problem involving plane wave propagation in one dimension. The 

problem is first solved using the finite element method to explic- 

itly model the layered microstructure, and subsequently the ho- 

mogenized stress field is calculated from the resulting solution. A 

general methodology is then presented for estimating the homog- 

enized stress field without performing the finite element analysis, 

and excellent agreement between the two methods is obtained. 

Conclusions are offered in Section 5 . 

2. Continuum Irving-Kirkwood homogenization theory 

The methods used in this work are based on the continuum ho- 

mogenization theory presented in Mandadapu et al. (2012) . In this 

Fig. 1. Schematic of the representation of the two scales, with positions in each 

denoted by the vectors y and x . 

section, the most important details of this theory are reviewed in 

the context of purely mechanical processes. 

2.1. Balance laws 

Consider a body B occupying a region R at time t . It is assumed 

that there exists a microscopic (“fine”) scale and a macroscopic 

(“coarse”) scale with the properties of the latter being derived by 

homogenization from the former. Additionally, it is assumed that 

the material can be modeled accurately as a continuum at both 

scales. A typical macroscopic point will be denoted y , and a micro- 

scopic point in its neighborhood will be denoted x , as in Fig. 1 . 

Since the material in each scale is assumed to behave as a con- 

tinuum, the standard continuum balance laws apply to both scales. 

Specifically, conservation of mass for the macroscale is written as 

˙ ρM (y , t) + ρM (y , t) 
∂ 

∂y 
· v M (y , t) = 0 , (1) 

and for the microscale as 

˙ ρm (x , t) + ρm (x , t) 
∂ 

∂x 

· v m (x , t) = 0 , (2) 

where ρ is the mass density and v the velocity. Here and hence- 

forth, superscripts M and m refer to variables in the macroscopic 

and microscopic scales, respectively. Also, ∂ 
∂y 

· (·) and 

∂ 
∂x 

· (·) de- 

note the divergence operators in each scale, while ˙ (·) stands for 

the material time derivative of ( · ). 

The balance of linear momentum for the macroscale is ex- 

pressed as 

ρM (y , t) ̇ v M (y , t) = 

∂ 

∂y 
· T 

M (y , t) + ρM (y , t) b 

M (y , t) , (3) 

and for the microscale as 

ρm (x , t) ̇ v m (x , t) = 

∂ 

∂x 

· T 

m (x , t) + ρm (x , t) b 

m (x , t) . (4) 

Here, T is the Cauchy stress and b is the body force per unit mass. 

In general, all macroscopic variables are functions of y and t , 

and microscopic variables are functions of x and t , but these func- 

tion dependencies may be omitted for brevity in subsequent equa- 

tions. 
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