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a b s t r a c t 

This paper presents a constitutive model, which combines the models proposed by Stewart and Cazacu 

(2011) and Zhou et al. (2014), to describe the ductile damage process in a commercially pure titanium 

(CP Ti) and to simulate its mechanical response. In particular, a Gurson-type porous material model is 

modified by coupling two damage parameters, accounting for the void damage and the shear damage re- 

spectively, into the yield function and the flow potential. The plastic anisotropy and tension–compression 

asymmetry exhibited by CP Ti are accounted for by a plasticity model based on the linear transformation 

of the stress deviator. The theoretical model is implemented in the general purpose finite element soft- 

ware ABAQUS via a user defined subroutine and calibrated using experimental data. Good comparisons 

are observed between model predictions and experimental results for a series of specimens in different 

orientations and experiencing a wide range of stress states. 

© 2016 Elsevier Ltd. All rights reserved. 

1. Introduction 

Titanium and its alloys have found widespread use in both 

commercial and industrial applications because of their outstand- 

ing engineering properties, such as good corrosion resistance, high 

strength to weight and stiffness to weight ratios, good toughness, 

low density, desirable formability, and biocompatibility ( Hanson, 

1986 ). Commercially pure titanium (CP Ti) is considered in this 

study. CP Ti has a hexagonal closed packed (hcp) crystal structure 

at room temperature. Hcp dominated metals are known to dis- 

play plastic anisotropy and have a strong strength differential in 

tension and compression (i.e., non-symmetry between tensile and 

compressive strengths). This is because two types of deformation 

modes, slip and/or twinning, can occur in the hcp crystal structure 

during plastic deformation. It is generally agreed that the strong 

strength differential is associated with the activation of twinning 

( Chun et al., 2005; Salem et al., 2003; Hosford and Allen, 1973 ). 

In order to design structures or mechanical components that 

seek to optimize weight, efficiency, and strength while maintaining 

safety, it is important to consider the evolution of damage within 

the material in question. In the particular case of ductile materials, 

modeling the progressive internal material degradation and fail- 

ure process has been the focus of extensive research efforts over 
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the past several decades. Gurson (1977) proposed a widely used 

homogenized yield criterion for void-containing materials based 

on the maximum plastic work principle, where the matrix ma- 

terial is assumed to obey the von Mises isotropic yield criterion. 

More recent efforts have been focused on extending/modifying the 

Gurson model to develop computational schemes that simulate 

the ductile fracture process under various circumstances. Tvergaard 

(1981,1982 ) introduced two adjustment parameters into the Gur- 

son model to account for the effect of void interaction and ma- 

terial strain hardening. Chu and Needleman (1980) proposed void 

nucleation models controlled by the local stress or plastic strain. 

Tvergaard and Needleman (1984) introduced a simplified method 

to provide for rapid deterioration of stiffness after localization has 

occurred in the material. The Gurson model, with the additional 

development by Tvergaard and Needleman, is often referred to as 

the GTN model by the fracture mechanics community. Gologanu 

et al. (1993,1994 ) derived a yield function for materials containing 

prolate and oblate voids. This model reduces to the form of the 

Gurson model when the void shape remains spherical. Gao et al. 

(2011) postulated to extend the Gurson model to include the ef- 

fects of hydrostatic stress and the third invariant of stress devia- 

tor on the matrix material. Benzerga and Besson (2001) extended 

the Gurson model for orthotropic materials and later Benzerga 

et al. (2004) proposed a yield criterion which accounts for the ef- 

fects of both void shape and material orthotropy. Recently Stewart 

and Cazacu (2011) developed a macroscopic anisotropic yield 
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criterion for porous materials when the matrix material is incom- 

pressible, anisotropic and displays tension–compression asymme- 

try. This model degenerates to the form of the Gurson model when 

the matrix material obeys the von Mises plasticity theory. For the 

Gurson-type models, the prediction of ductile fracture comes out 

naturally through the progressive loss of load carrying capacity at 

the material level. 

Despite the apparent success and wide popularity of the 

Gurson-type models in predicting ductile fracture, a major draw- 

back is their inapplicability to model localization and fracture 

under low stress triaxiality, shear dominated deformations since 

these models do not predict void growth and damage evolu- 

tion under shear loading. Under low stress triaxiality, rather than 

void growth, shear localization becomes the mechanism of duc- 

tile fracture ( Rice, 1976; Yamamoto, 1978; Mear and Hutchinson, 

1985; Barsoum and Faleskog, 2007; Mohr and Marcadet, 2015 ). To 

overcome this problem, Xue (2008) and Nahshon and Hutchinson 

(2008) modified the GTN model ( Gurson, 1977; Tvergaard, Needle- 

man, 1984 ) by treating the void volume fraction in the model as 

a generalized damage parameter which includes the shear damage 

contribution. Nielsen and Tvergaard (2009) modified the Nahshon–

Hutchinson model by pre-multiplying the shear damage contri- 

bution by an ad hoc triaxiality-dependent factor to improve the 

model performance in the medium to high triaxiality region. Zhou 

et al. (2014) discussed the issues of using a single damage param- 

eter in the GTN yield function and presented a modified model by 

combining the damage mechanics concept of Lemaitre ( Lemaitre, 

1985 ) with the Gurson-type porous plasticity model. Malcher et al. 

(2014) proposed an extended GTN model, which has two indepen- 

dent damage parameters: the first one is driven by the hydrostatic 

stress and the second other is driven by the deviatoric stress. Jiang 

et al. (2016) modified the GTN model in a similar way to study the 

ductile fracture behavior under high, low and negative stress tri- 

axiality loadings, in which two distinctive damage parameters, re- 

spectively related to void growth mechanism and void shear mech- 

anism, are introduced into the yield function as internal variables 

of the degradation process. In all these modified GTN models, the 

matrix material is always treated as isotropic. 

In this work, we combine the models of Stewart and Cazacu 

(2011) and Zhou et al. (2014) to describe ductile damage evolution 

in CP Ti. The structure of the paper is as follows. In Section 2 , 

the ductile damage model, which include both void damage and 

shear damage, and the matrix plasticity model, which accounts for 

both plastic anisotropy and tension–compression asymmetry, are 

described. The evolution law for void volume fraction remains the 

same as in the original GTN model and the shear damage evolution 

law proposed by Xue (2008) is adopted. Section 3 describes the 

material, test matrix and experimental procedure. Section 4 de- 

tails the model calibration procedures and Section 5 compares 

the model predictions with experimental results. Finally some 

concluding remarks are given in Section 6 . 

2. The ductile damage model 

Ductile fracture is usually attributed to a process of void 

nucleation, growth and coalescence under triaxial stress state 

( McClintock, 1968; Rice and Tracey, 1969; Van Stone et al., 1985; 

Garrison Jr. and Moody, 1987 ) and a process due to shear local- 

ization when the stress triaxiality becomes low ( Rice, 1976; Ya- 

mamoto, 1978; Mear and Hutchinson, 1985; Barsoum and Faleskog, 

2007; Mohr and Marcadet, 2015 ). One of the most widely used mi- 

cromechanical models for ductile fracture is due to Gurson with 

subsequent development by Tvergaard and Needleman ( Gurson, 

1977; Tvergaard and Needleman, 1984 ). The yield function of the 

GTN model takes the following form 
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where f is the current void volume fraction, σ e is the macroscopic 

effective stress, σ kk is the hydrostatic stress, and σ M 

is the cur- 

rent yield stress of the matrix material. The adjustment parame- 

ters q 1 and q 2 were introduced by Tvergaard (1981, 1982 ) to im- 

prove model predictions. The evolution of the void volume fraction 

is given by 

˙ f = 

˙ f growth + 

˙ f nucleation (2) 

where ˙ f growth and 

˙ f nucleation represent the growth and nucleation 

of the voids. Evaluation of the void growth rate is based on the 

bulk material incompressibility under plastic deformation 

˙ f growth = ( 1 − f ) ̇ ε 
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where ˙ ε p 
kk 

represents the first invariant of the plastic strain rate 

tensor, which defines the rate of volume change. Void nucleation 

can be stress or strain controlled. A commonly used strain con- 

trolled void nucleation law follows a normal distribution in a sta- 

tistical way as suggested by Chu and Needleman (1980) 
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where ε p 
M 

represents the matrix plastic strain, S n and ɛ n are the 

standard deviation and the mean value of the distribution of the 

plastic strain, and f n is the total void volume fraction that can be 

nucleated. Parameters f n , ɛ n and S n can be treated as material con- 

stants. 

The effect of rapid void coalescence after the onset of localiza- 

tion is taken into account by replacing f in Eq. (1) with an effective 

porosity f ∗ defined by the following bilinear function ( Tvergaard 

and Needleman, 1984 ) 

f ∗ = 

{
f for f ≤ f c 
f c + 

1 / q 1 − f c 
f f − f c 

( f − f c ) for f c ≤ f ≤ f f 
(5) 

where f c is the critical void volume fraction at which void coales- 

cence begins and the material softening is accelerated thereafter. 

As f reaches f f , the material loses all stress carrying capacity. 

In the original GTN model, the matrix material obeys the J 2 
flow plasticity theory, where σ e is the von Mises equivalent stress. 

Stewart and Cazacu (2011) extended GTN model to account for the 

plastic anisotropy and tension–compression asymmetry exhibited 

by the matrix material. The macroscopic yield criterion of this ex- 

tended model is expressed as 

� = 

(
σe 

σM 

)2 

+ 2 q 1 f cosh 

(
q 2 
h 

σkk 

σM 

)
−

(
1 + q 1 f 

2 
)

= 0 (6) 

where h is a material parameter depending on the anisotropy co- 

efficients as well as the strength differential coefficient and σ e is 

defined by Eq. (7) . Here the plasticity model developed by Cazacu 

et al. (2006) is adopted to describe the matrix plasticity behav- 

ior. This model is based on a linear transformation of the devia- 

toric part of the Cauchy stress tensor, similar to previous studies by 

Barlat and coworkers ( Barlat et al., 1991, 1997 ) and Lademo et al. 

(1999) . The yield condition of this plasticity model is expressed 

as 

σe ( �i , k ) = σM 
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with 
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