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a b s t r a c t 

A study of the mechanical and dispersion properties of cubic lattice structures have been conducted to 

assess the viability of designing a multifunctional and lightweight lattice structure with excellent static 

properties and elastic band gaps for vibration attenuation. In this study, the parameters that characterises 

the mechanical properties for stiffness and strength to be used as sandwich structure core materials 

were identified. A parametric study on the geometry of the lattice structures on the static properties was 

performed in order to determine the optimal geometry for these applications. The trends relating the 

geometric parameters to the mechanical properties of the lattice topologies were found and discussed. 

Local resonators were then added to the optimal geometries to create the band gaps that will attenuate 

vibrations at given frequency ranges. The tuned frequency was set to be 500 Hz in this study. The effects 

of the geometric parameters on the band gap widths produced by the introduction of the resonators were 

studied and the trends were found to be similar for all topologies. The results of this study indicate that 

the addition of local resonators to introduce band gaps is only viable when the stiffness and strength 

of the lattice without the resonators are sufficiently large, so that the increase in density will not be 

too significant. Lastly, band gaps around the tuned frequencies were observed for one of the topologies 

without the resonators. Since these band gaps do not result in an increase in mass, tuning the geometry 

to move the band gaps to the desired frequency ranges is a preferred strategy over the addition of local 

resonators. 

© 2016 Elsevier Ltd. All rights reserved. 

1. Introduction 

Lattice materials are cellular structures composed of periodi- 

cally repeating unit cells. These materials can be engineered to 

have several unique properties, such as having high strength to 

density ratio ( Deshpande et al., 2001; Fleck et al., 2010 ), high stiff- 

ness to density ratio ( Deshpande et al., 2001; Fleck et al., 2010 ), 

low thermal coefficient with high stiffness ( Berger et al., 2011; 

Steeves et al., 20 07; 20 09 ), and elastic band gaps, which are re- 

gions of frequencies that prevent elastic waves from propagating 

( Leamy, 2012; Phani et al., 2006; Raghavan and Phani, 2013 ). Since 

lattice materials can be designed to have several desirable proper- 

ties, they have huge potential to be used in multifunctional appli- 

cations, including ultralight structures, impact absorbers, heat dis- 

sipation, vibration control, and many others. 

The multi-functionality of lattice materials enables it overcome 

several issues that cannot be resolved with conventional bulk 
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materials. Among these issues is the conflicting requirements 

of stiffness and vibration control of structural components. In 

order to sustain huge loads without large static displacements or 

compromising structural integrity, structural components gener- 

ally require high stiffness ( Baravelli et al., 2013; Lagoudas et al., 

2001 ). However, structures with high stiffness are also sensitive 

to vibrations, which may threaten the structural integrity of the 

system. A possible solution to minimise the trade-off between 

vibration attenuation and stiffness is to exploit the high stiffness 

and strength to density ratios present in selected lattice structures 

( Ashby, 2006; Ashby et al., 2000 ) and embedding local resonators, 

as seen in several studies ( Baravelli et al., 2013; Baravelli and 

Ruzzene, 2013; Liu et al., 2012; 2011 ), to produce band gaps 

that will attenuate vibrations. With current three-dimensional 

printing technology, lattice structures with the embedded local 

resonators can be manufactured, allowing the potential of the 

multi-functionality of lattice structures to be realised. 

Currently, there are a large number of studies that have been 

conducted on the analysis of the static mechanical (stiffness and 

strength) ( Choi et al., 2010; Deshpande et al., 2001; Dragoni, 2013; 

Mines, 2008; Ptochos and Labeas, 2012a; 2012b; Vigliotti and 

Pasini, 2012; Wallach and Gibson, 2001 ) and dispersion properties 
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of lattice materials ( Leamy, 2012; Liu et al., 2012; 2014; Phani et al., 

2006; Raghavan and Phani, 2013; Xu et al., 2013 ). However, only a 

few studies ( Baravelli et al., 2013; Baravelli and Ruzzene, 2013; Liu 

et al., 2011; Scarpa et al., 2013 ) have investigated these two types 

of properties in tandem or the design of a stiff structural material 

with desirable dynamic characteristics. Therefore, this paper aims 

to contribute to the design of elastic metamaterials with desirable 

dynamic properties, while having other qualities, like high stiff- 

ness, so that it can be implemented in practical situations. This 

is an important feature of elastic metamaterials as highlighted in 

Hussein et al. (2014) . The parametric study of the effects of the 

geometry on the static mechanical and dispersion properties will 

serve as a guide for future designs of multifunctional components 

and encourage future research in this type of materials. 

In this study, the mechanical and dispersion properties of four 

cubic lattice topologies with internal resonators, similar to the de- 

signs seen in Liu et al. (2012) , were studied. Firstly, a parametric 

study on the lattice geometry, which are the lengths and radii of 

the lattice struts, was performed to determine the combination of 

geometric parameters that give the optimal mechanical properties. 

Local resonators consisting of struts with a point mass at one of 

its ends will then be attached to the lattices with the best me- 

chanical properties to produce the local resonant band gaps. The 

width and location of the band gaps resulting from the addition of 

local resonators of different sizes and masses will be investigated. 

Lastly, the increase in density was also calculated to determine the 

penalty of adding the resonators and to assess if this strategy is 

viable. 

2. Selected topologies and analysis procedures 

2.1. Selected topologies and resonators 

Four cubic lattice topologies, which are the simple cubic, body 

centred cubic (BCC), face centre cubic (FCC), and octet truss struc- 

tures, to be used as core materials in sandwich structures were 

studied. The unit cells of these topologies including the local res- 

onators are shown in Fig. 1 . Several of the beams in the unit cells 

were omitted to avoid overestimating the strength and stiffness 

through duplication. The lattice structures will consist of the base 

lattice structures and the added local resonators, which are beams 

with a point mass, for example a ball bearing, at the end. This 

facilitates the manufacturing of the local resonators as materials 

other than the strut materials can be used for the mass, which can 

be attached easily via other strategies like adhesives. 

There are several reasons for the selection of these topologies. 

Firstly, the addition of the resonators to these lattices are straight- 

forward and since the resonators do not contribute to the strength 

or stiffness of the material, the mechanical properties and disper- 

sion properties can be investigated independently. Additionally, cu- 

bic lattice structures can be easily manufactured using currently 

available three-dimensional printing technologies. The natural fre- 

quencies of the local resonators, and the location of the band gap, 

can also be easily tuned without making any changes to the base 

structure. 

Although other methods to create LR band gaps, such as adding 

masses at the nodes ( Liu et al., 2014 ) or manipulating the con- 

nectivity of the struts as discussed in Wang et al. (2015) can be 

used to introduced band gaps, the key reason that the topologies 

in Fig. 1 were selected over the other architectures is because the 

natural frequencies of the resonators can be found easily. This fa- 

cilitates the selection of the geometric parameters and mass of the 

resonators to achieve the required tuned frequencies. The calcu- 

lations for the target frequencies by adding masses at the nodes 

are less straightforward than the cantilever resonators in the se- 

lected designs. Furthermore, the lattice structure studied here is 

Table 1 

Ratios to maximise for beam and plate configurations ( Ashby et al., 20 0 0 ). 

Configuration 

Strength 

constrained 

Stiffness 

constrained 

Beam 

σ
2 
3 

f 

ρ

E 
1 
2 

ρ

Plate 
σ

1 
2 

f 

ρ

E 
1 
3 

ρ

where σ f is the failure stress, E is the Young’s modulus, and ρ is the 

density. 

intended to be used as a lightweight structural component, with 

high stiffness and low mass, suggesting that the struts are likely 

to be stiff. Since the natural frequency increases with increasing 

stiffness and reducing mass, the strategy of adding masses at the 

nodes may lead to large masses being required for a given target 

frequency. Conversely, the resonators that do not take any load can 

be designed to have low stiffness and a lower mass can be used 

to achieve the same natural frequency. This provides more design 

flexibility. Similarly, the manipulation of the strut connectivity will 

result in significant changes in the static mechanical properties, 

which complicates the analysis significantly. 

The ratios characterising the structural performance of core ma- 

terials in lightweight sandwich panels and beams according to 

Ashby et al. (20 0 0) are summarised in Table 1 . The ratios in the 

table were obtained using the analysis from Ashby (2005) , which 

will be described briefly. For a beam or panel being loaded as 

shown in Fig. 2 to be used in lightweight applications, the mass 

of the beam or panel, m , defined in Eq. (1) must be minimised. 

For a beam the width, W , and height, H , are equal while a panel is 

assumed to have a fixed width, W , 

m = ρ(W HL ) (1) 

where ρ is the density of the material and W, H , and L are the 

dimensions shown in Fig. 2 . 

However, as a structural bearing component, the beam or panel 

must be able to either have a sufficient amount of stiffness (stiff- 

ness constrained) to minimise deflection or sufficient strength 

(strength constrained) to prevent failure. Therefore, the minimum 

stiffness, S E and strength, S σ are defined in Eq. (2) and Eq. (3), re- 

spectively. These equations are easily derived based on the Euler–

Bernoulli beam theory and although Fig. 2 shows a point load con- 

dition, the equations for other loading conditions can be found 

by varying the variable C . Interested readers can refer to Ashby 

(2005) for the derivations of the equations and values of C . 
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(

F 

δ

)
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)
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where S E and S σ are the stiffness and strength constraints, F is the 

force, δ is the deflection, E is the Young’s modulus, and σ f is the 

failure stress. 

According to Eq. (1) , the values of H and W for the beam, and H 

for the panel can be varied freely. The restrictions of the stiffness 

and strength constraints are imposed by substituting Eqs. (2) and 

(3) into Eq. (1) to eliminate H = W for the beam, or H for the 

panel. 

m = 

(
12 S E L 

3 

C 

) 1 
2 

L 

(
ρ

E 
1 
2 

)
(4) 

m = 

(
6 S σ L 

C 

) 2 
3 

L 

( 

ρ

σ
2 
3 

f 

) 

(5) 



Download English Version:

https://daneshyari.com/en/article/277094

Download Persian Version:

https://daneshyari.com/article/277094

Daneshyari.com

https://daneshyari.com/en/article/277094
https://daneshyari.com/article/277094
https://daneshyari.com

