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a b s t r a c t 

The idea in this paper is to build a class of constitutive equations for highly compressible isotropic mate- 

rials that, among others, are capable to describe a zero apparent Poisson’s ratio in the whole finite strain 

range, not only for moderate straining. This remarkable property is, for instance, observed in many soft 

materials with micro-structures such as sponges and polymeric foams with high porosities. It would then 

be suitable to describe their behavior within a macroscopic modeling framework. More specifically, herein 

by means of elementary considerations, we deduce adequate forms of strain-energy functions that are a 

priori decomposed into purely volumetric and volume-preserving parts. A class of compressible hypere- 

lastic materials of the general Odgen type is obtained. It can consequently be specialized, for instance, to 

neo-Hookean, Mooney–Rivlin, and Varga’s model types as well. Furthermore, for the elastic parameters, 

a connection with the limiting case of linear elasticity is made whenever possible, in particular with the 

classical Poisson’s ratio, and with the bulk to shear moduli ratio. 

© 2016 Elsevier Ltd. All rights reserved. 

1. Introduction 

In isotropic linear elasticity theory, the very important Poisson’s 

ratio, known as ν , is determined from kinematical measurements 

alone. For example, in a simple tension experiment, it is defined as 

the ratio of the lateral contractive engineering strain to the exten- 

sional one. However, in the finite strain range, Poisson’s ratio plays 

a less important role, and only ad-hoc definitions can be adopted 

speaking then of the Poisson function, see for example Beatty and 

Stalnaker (1986) for some useful definitions. To avoid any confu- 

sion in large deformation, herein we prefer to speak of apparent 

Poisson’s ratio. When a material is uniaxially loaded along a given 

direction, by apparent Poisson’s ratio we mean the ratio between 

the deformation transverse to the loading and the one along the 

loading direction. Hence, if the material experiences zero appar- 

ent Poisson’s ratio, this simply means that there is no contraction 

nor extension in directions transverse to that of the loading direc- 

tion. This property can at least be observed in many soft materi- 

als, mostly with micro-structures, such as sponges and polymeric 

foams with high open porosities. It would then be suitable to de- 

scribe their macroscopic behavior within a continuum modeling 

framework. 
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The aim of this paper is precisely to build a class of hyperelastic 

constitutive models that are capable to describe the zero apparent 

Poisson’s property when adequate sets of material parameters are 

chosen. As the materials we consider are compressible by essence, 

we a priori adopt an additive split of the strain-energy function 

into a purely volumetric part and a volume-preserving part. More 

specifically, we start the analysis by choosing a known form for the 

later part, here a form written in terms of the principal stretches 

due to Ogden (1997) , and the challenge is then to find an ade- 

quate form for the volumetric part of the strain-energy function. 

The analysis is conducted with the help of a model problem in 

simple tension/compression. It is found that the resulting consti- 

tutive modeling is remarkably simple, and the connection with the 

limiting case of linear elasticity is straightforward. Very few mod- 

els exist in the literature that describe the same properties. How- 

ever, notice that strain energy functions of the Hencky type based 

on the logarithmic stretches have been proposed recently, see for 

example Neff et al. (2015) . 

An outline of the remainder of this paper is as follows. In 

Section 2 , we define the simple model problem used during the 

analysis together with the basic governing equations needed to 

solve it. Then, in Section 3 , the analysis starts with the com- 

pressible model of the N = 1-Ogden type where the desired 

zero Poisson’s ratio property is among others reached and deeply 

investigated. Next, in Section 4 , the class of constitutive models is 

extended to the complete model due to Ogden. Finally, conclusions 

are drawn in Section 5 . 
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2. General form and sample example 

Since the solids we consider are (highly) compressible, it is 

beneficial to locally split the deformation gradient F into a vol- 

umetric part, that depends on the Jacobian J = det F > 0 , and an 

isochoric part that depends on the modified deformation gradient 

J −1 / 3 F , as originally proposed by Flory (1961) , and successfully ap- 

plied later on in finite strain elasticity, e.g. see Holzapfel (20 0 0) ; 

Lubliner (1985) ; Simo and Hughes (1998) among many others. We 

then choose to write 

ψ(C) = ψ vol ( J) + ψ iso ( J 
− 2 

3 C) , (1) 

for the strain-energy function ψ that, for objectivity reasons, de- 

pends on F only through the right Cauchy–Green tensor C = F T F 

which, otherwise, is also a strain measure. The notation ( ·) T is used 

for the transpose operator of a second-order tensor. The first term 

ψ vol in (1) is related to the volumetric part of the response while 

the isochoric term, ψ iso , is related to the volume-preserving part. 

For the stress response, the Cauchy stress tensor, herein denoted 

by σ , is given by 

σ = J −1 F 

(
2 

∂ψ 

∂C 

)
F T ≡ ∂ψ vol 

∂ J 
1 ︸ ︷︷ ︸ 

= σvol 

+ 2 J −1 F 
∂ψ iso 

∂C 
F T ︸ ︷︷ ︸ 

= σiso 

, (2) 

where 1 is the second-order identity tensor. For a solid of actual 

configuration B t , the Cauchy stress tensor is the one that is used 

in the spatial form of the balance equation given in quasi-statics 

by 

div σ = 0 in B t , σn = t on ∂B t , (3) 

where div( ·) stands for the spatial divergence operator, and t is 

the Cauchy traction vector on the boundary ∂B t of unit normal n . 

Here and henceforth, the volumetric forces will be neglected for 

the sake of simplicity. 

A model problem will be used throughout the paper that con- 

sists of a cylindrical sample uniformly loaded along its axis that is 

aligned with the fixed direction 

�
 e 3 , and free laterally. The loading 

can be tension or compression. However, for compressive loadings, 

we suppose that the height to diameter ratio is low enough so as 

to preclude buckling instabilities, a topic that is out of the scope of 

this paper. The solution of this problem is simple with a homoge- 

neous distribution of the stress tensor of the form 

σ = σ33 � e 3 � �
 e 3 , (4) 

where the notation � stands for the tensor product. The cylinder 

undergoes a homogeneous transformation as well with identical 

transverse stretching λ1 = λ2 . The deformation gradient is then of 

the form 

F = λ1 (1 − �
 e 3 � �

 e 3 ) + λ3 � e 3 � �
 e 3 , (5) 

where { λi } i =1 , 2 , 3 are the (principal) stretches along the respective 

directions � e 1 , � e 2 and 

�
 e 3 . At any material point, the Jacobian of the 

transformation is 

J = λ2 
1 λ3 . (6) 

3. Modeling with the N = 1-Ogden model 

We start this paper by chosing for the part ψ iso in (1) an N = 1 - 

Ogden type model, Ogden (1997) . In terms of the modified princi- 

pal stretches λ̄A = J −1 / 3 λA , A = 1 , 2 , 3 , we write 

ψ iso = 

2 μ

m 

2 
1 

(
λ̄m 1 

1 
+ ̄λm 1 

2 
+ ̄λm 1 

3 
− 3 

)
. (7) 

where μ denotes the classical shear modulus in the reference 

configuration, known from the linear theory, and m 1 is Ogden’s 

coefficient. 

Next, the principal isochoric stresses are given in terms of the 

principal values of the Kirchhoff-type isochoric stress tensor J σ iso 

as 

Jσiso A ≡ λA 

∂ψ iso 

∂λA 

= λ̄A 

∂ψ iso 

∂ ̄λA 

− 1 

3 

3 ∑ 

B =1 

(
λ̄B 

∂ψ iso 

∂ λ̄B 

)
, (8) 

where use has been made of the following useful relations, see for 

example Simo and Taylor (1991) for details: 

∂ J 

∂λA 

= Jλ−1 
A 

and 

∂ ̄λB 

∂λA 

= J −
1 
3 

(
δAB −

1 

3 

λ̄B ̄λ
−1 
A 

)
. 

Now back to our sample example, from (5), (6) and (8) , we 

have 

J σiso 1 = J σiso 2 = 

2 μ

3 m 1 

[ (
λ1 

λ3 

)m 1 
3 −

(
λ3 

λ1 

)2 m 1 
3 

] 

, 

Jσiso 3 = 

4 μ

3 m 1 

[ (
λ3 

λ1 

)2 m 1 
3 −

(
λ1 

λ3 

)m 1 
3 

] 

. (9) 

3.1. Volumetric strain-energy and apparent Poisson’s ratio 

After many attempts, we have decided to choose the following 

form for the volumetric part of the strain-energy function: 

ψ vol ( J ) = 

κ

m 1 

(
J α+1 − 1 

α + 1 

− J 1 −β − 1 

1 − β

)
, (10) 

with the constant κ interpreted as the elastic bulk modulus in the 

reference configuration. The empirical dimensionless coefficients α
and β must, if possible , be determined later on in such a way that 

the apparent zero Poisson’s ratio property can be satisfied. This de- 

termination strongly depends on the model used for the isochoric 

part of the response, here the one given by (7) . Finally, the m 1 di- 

mensionless constant in (10) is the one already used in (7) as well. 

The volumetric part of the stress tensor is then, see Eq. (2) , 

σvol = 

κ

m 1 

( J α − J −β ) 1 . (11) 

It immediately follows from (11) that, as κ is the bulk modulus 

in the reference configuration, the connection 

m 1 = α + β, (12) 

must be satisfied. Indeed, at the limiting case of an infinitesimal 

perturbation near the reference configuration, the first order devel- 

opment of the expression (11) must be identical to the volumetric 

part of the constitutive relation in the infinitesimal theory. 

Back again to our example, replacing the Jacobian (6) into 

(11) with the use of (12) , gives the volumetric part of the stress 

as 

σvol = 

κ

m 1 

(
λ2 α

1 λ
α
3 − λ2(α−m 1 ) 

1 
λα−m 1 

3 

)
1 , (13) 

that completes the expression of the stress tensor (2) for our case. 

In particular, along the directions � e 1 and 

�
 e 2 , the identical trans- 

verse stress components are zero, see Eq. (4) , and hence Jσ11 = 

Jσ22 = 0 . We then get from (9) 1 and (13) : 

κ

m 1 

(
λ2(α+1) 

1 
λα+1 

3 − λ2(α−m 1 +1) 
1 

λα−m 1 +1 
3 

)
+ 

2 μ

3 m 1 

(
λ

m 1 
3 

1 
λ

− m 1 
3 

3 
− λ

− 2 m 1 
3 

1 
λ

2 m 1 
3 

3 

)
= 0 . (14) 

Now if the apparent Poisson’s ratio is zero in the whole strain 

range, then the lateral stretches λ1 = λ2 must always be equal to 1 

for any admissible stretch λ3 along the uniaxial loading. From (14) , 

by imposing λ1 = 1 we get 

κ

m 1 

(
λα+1 

3 − λα−m 1 +1 
3 

)
+ 

2 μ

3 m 1 

(
λ

− m 1 
3 

3 
− λ

2 m 1 
3 

3 

)
= 0 , (15) 
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