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a b s t r a c t 

Piezoelectric behavior of quantum dot core/shell structures in zinc-blende and wurtzite crystals are inves- 

tigated in the framework of linear piezoelectricity. Strains arising from lattice mismatch in the core/shell 

structure are modeled as eigenstrains resulting from size-mismatched inclusion embedded in a finite 

spherical piezoelectric medium. Assuming that the core/shell piezoelectric structure exhibits spherically- 

hexagonal anisotropy, an exact solution is obtained through the eigenvalue decomposition method and 

the analytical expressions of the electroelastic fields are found using appropriate boundary and continu- 

ity conditions. It is found that the electroelastic fields can become singular or vanish at the center of the 

core for certain cases of spherical anisotropy. The analytical solutions are verified with the finite element 

analysis (FEA) and found to be in excellent agreement. FEA for the case of rectilinear anisotropy was also 

performed which showed considerable difference from the spherically anisotropic analytical solution. The 

closed-form solution obtained in this work can be used for any two-layer piezoelectric structures having 

spherical geometry subjected to various electromechanical loads. 

© 2016 Elsevier Ltd. All rights reserved. 

1. Introduction 

Quantum dots (QDs) are nanocrystals that are widely used 

in electronic devices as semiconductors due to their distinct 

and unique characteristics ( Hong et al., 2012 ). Among them, the 

nanoscale optoelectronic properties are utilized in fine tuning the 

electronic band structure to optimize the performance of optoelec- 

tronic devices. QD structures are often manufactured as core/shell 

assembly due to the chemical sensitivity of the core surface which 

leads to degradation of emission properties. Hence, the shell struc- 

tures are fabricated to enhance the surface passivation ( Lim et al., 

2014 ). Since the core and the shell are often made from differ- 

ent materials with different lattice dimensions, the assembled QD 

core/shell structures can induce misfit strains. The misfit strains 

have a profound effect on the exciton dynamics and blinking prop- 

erties which play an important role in determining the light emis- 

sion performance. The induced strains can alter the theoretical pre- 

diction of the optoelectronic properties that are calculated from 

the first principle calculations. Hence, in order to better predict the 

optoelectronic properties, the elastic strains must be included in 

the Hamiltonian equations in calculating the electronic band struc- 
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tures which are usually calculated by the k · p method ( Chuang 

and Chang, 1996; Park and Chuang, 1998 ). The purpose of this 

work is to provide a linear elasticity solution for a free-standing 

QD core/shell structure so that the misfit strains can be properly 

taken into account in quantum mechanical calculations ( Park and 

Cho, 2011 ). The obtained solutions are applied to Cadmium Se- 

lenide/Cadmium Sulfide (CdSe/CdS) core/shell QD structures which 

come in the form of zinc-blende (ZB) or wurtzite (WZ) crystals. 

ZB crystals exhibit cubic material symmetry and show no piezo- 

electricity, whereas WZ crystals with hexagonal material symme- 

try show fully coupled piezoelectric effects. Therefore, a piezoelec- 

tric analysis is required in studying the electroelastic behavior of 

wurtzite crystal QDs since both the elastic and piezoelectric fields 

are equally important in understanding their optoelectronic prop- 

erties. The physics community usually uses semicoupled models in 

analyzing piezoelectric fields in QDs wherein a purely elastic so- 

lution is first obtained through linear elasticity analysis which is 

then used to find the polarization field, and subsequently the elec- 

tric potential and electric fields. Using this approach, the piezo- 

electric polarization induced by an elastic field was obtained for 

spherical, cuboidal, and pyramidal dots ( Davies, 1998 ). However, 

Pan (2002) pointed out that the semicoupled model can give er- 

ror especially for materials exhibiting strong piezoelectric coupling 

behavior. In this work, the electroelastic fields are obtained for 

QDs that are modeled as a misfitted inclusion in a finite spherical 
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matrix taking into account of fully-coupled piezoelectric effects 

( Pan, 2002 ). 

In order to make these mathematical analyses simple as to yield 

a closed-form solution, we have assumed that the piezoelectric 

core and shell assembly exhibit spherically hexagonal anisotropy. 

This may not accurately model the actual QD crystals which 

show rectilinearly-cubic or rectilinearly-hexagonal anisotropy as in 

the bulk material. However, a simple closed-form solution may 

prove useful for researchers who are more familiar with quan- 

tum mechanical calculation rather than elaborate elasticity analy- 

sis. Thus, incorporating fully-coupled piezoelectricity, we have used 

the eigenvalue decomposition method and obtained a closed-form 

solution for the two-domain problem that can handle the misfit 

via displacement jump condition across the interface. Our solu- 

tion matches exactly with that of a previous work whose solution 

was obtained using a different method for a single-domain piezo- 

electric sphere ( Heyliger and Wu, 1998 ). Subsequently, our elec- 

troelastic solutions for various cases are verified with FEA simula- 

tions. To account for the misfit strain arising from lattice mismatch, 

Eshelby’s eigenstrain concept was used with equivalent thermal 

strain in performing the FEA simulations. 

Much theoretical works on eigenstrains induced by a lattice 

mismatch in QDs have been studied during the past two decades. 

Zero dimensional QDs are often embedded in a matrix or syn- 

thesized by coating the core structures with functional mate- 

rials. Pyramidal and cubic structures embedded in an infinite 

matrix were examined analytically by using Green’s function or 

Eshelby method ( Downes et al., 1997 ). The analytical solutions in- 

troduced by Eshelby (1957) was extensively utilized in the frame- 

work of three dimensional elasticity. Subsequently, Green’s func- 

tion method was developed to obtain for arbitrary shapes. Using 

these methods, the strain distributions in the arbitrarily shape QDs 

were examined along various crystallographic directions, and the 

assumption of isotropy of QDs was demonstrated within a reason- 

able accuracy ( Andreev et al., 1997 ). There also were endeavors in- 

corporating atomistic effects to improve the theoretical predictions 

( Makeev and Madhukar, 2002 ). For sub 10 nm structures, the strain 

distribution including the surface effects are calculated which can 

reflect the size-dependent properties of QD structures ( Sharma 

et al., 2003 ). The mechanical strain incorporating size-dependent 

effect was examined by comparing the calculations from non-local 

elasticity and classical elasticity. Extensive work in this area is well 

reviewed in an article by Maraganti and Sharma (2007) . In com- 

parison with a single quantum dot structure embedded in an infi- 

nite matrix, however, the theoretical work for a free-standing QD 

core/shell structure incorporating fully-coupled piezoelectric effect 

has not been as extensively addressed ( Park and Cho, 2011 ). 

The work herein provides the closed-form solution for the 

piezoelectric behavior arising in piezoelectric core/shell structure 

in the framework of classical linear elasticity. This work can con- 

tribute to the theoretical prediction of the optoelectronic proper- 

ties and help in gaining deeper understanding of the optoelectronic 

behavior of QD devices. The solutions obtained can also be applied 

to any piezoelectric composite structures having spherical symme- 

try that arises in modeling practical devices such as sonar trans- 

ducers. 

2. Analytical solutions for misfitted piezoelectric inclusion in 

finite piezoelectric matrix 

Considering the spherical symmetry of the problem at hands, 

the displacement, u i , and the electric potential, �, depend only on 

the radial coordinate, R , such that 

u R = u R (R ) , u θ = u φ = 0 

� = �(R ) . (1) 

In the absence of body force and body charge, the electroelastic 

governing equations can be written 

σi j, j = 0 , 

D i,i = 0 , (2) 

where σ ij is the stress tensor, D i is the electric displacement vector 

and comma denotes spatial derivative. The constitutive equations 

reflecting fully-coupled piezoelectric effect can be expressed as 

σi j = C i jkl ε kl − e ki j E k 

D i = e ikl ε kl + εik E k , (3) 

in which ε kl are strains, E k are electric fields, C ijkl are elastic con- 

stants, e kij are piezoelectric constants and ε ik are dielectric con- 

stants. Normally, hexagonal piezoelectric crystals exhibiting 6-mm 

symmetry will have x 3 -axis as the c -axis with x 1 - x 2 plane being 

isotropic. Here, in order to accommodate the spherical geometry 

of QD crystals, spherically–hexagonal anisotropy is assumed with 

the radial direction coinciding with the c -axis and θ and φ direc- 

tions defining isotropic spherical surfaces. Then, the constitutive 

equations can be expressed in spherical coordinates with the R - 

direction coinciding with the c -axis, ⎛ 
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Likewise, the governing Eq. (2) in spherically symmetric coordi- 

nates can be expressed as 
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(5) 

The general solution for these electroelastically coupled differen- 

tial equations can be obtained by the eigenvalue decomposition 

method as shown in the Appendix: 
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