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a b s t r a c t 

The purpose of this paper is to determine, via a homogenization technique and in the framework of small 

strains, the macroscopic poroelastic properties of a saturated, deformable, cracked porous medium. The 

poroelastic matrix is assumed to be homogeneous and the cracks to be connected discontinuities, infilled 

with a poroelastic material. They are periodically distributed, with the size of the period being small 

compared to the size of the sample. The considered up-scaling method (based on asymptotic expansions) 

will provide two uncoupled mechanical and hydraulic problems describing the overall behavior of the 

material. The degradation of the mechanical properties due to damage is then introduced. Damage de- 

pends on cracks’ opening, thus making the problem non-linear. A numerical solution of the problem is 

provided using finite elements. Any stress-strain loading path can be reproduced. The numerical solution 

of an oedometric test and a biaxial test allows the exploration of the non-linear anisotropic behavior 

along with the bifurcation phenomenon. 

© 2016 Elsevier Ltd. All rights reserved. 

1. Introduction 

During the past decades, big effort s have been made to better 

comprehend heterogeneous materials ( Auriault, 1991; Biot, 1941; 

Chambon et al., 2004; Kanouté et al., 2009; Sánchez-Palencia, 

1980 ). Numerical modeling can be successfully applied to contin- 

uum problems but difficulties arise when trying to model a hetero- 

geneous microstructure ( Kouznetsova et al., 2001 ). The difference 

between the scale of the micro- and macro-structures makes it 

difficult to determine an appropriate mesh size, leading to a com- 

putationally expensive problem if one focuses on the micro-scale, 

or to an approximate description of the microstructural behavior if 

one focuses on the macroscale problem ( Kouznetsova et al., 2001 ). 

Furthermore, macro-scale constitutive laws, calibrated with ex- 

perimental results, are often adopted. This approach is however 

less effective when dealing with complex behaviors ( Caillerie, 

2009 ). An alternative is provided by homogenization techniques 

that allow the inclusion of the micro-scale description within the 

macroscopic problem. In this latter framework, analytic, e.g. mix- 

ture theory ( Gray and Hassanizadeh, 1979 ) or semi-analytic, e.g. 

Eshelby (1957) procedures have been developed. However, these 

theories cannot describe the micro–macro-behavior for non-linear 

constitutive laws or non-regular micro-structure configurations in 
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an accurate manner (see, e.g. Kanouté et al., 2009 ). Numerical ho- 

mogenization approaches such as direct micro–macro-techniques 

( Miehe et al., 1999; Nguyen, 2013; Nitka et al., 2011; Smit et al., 

1998 ) overcome these limitations. These techniques use numerical 

calculations at the (usually periodic) micro-scale level to provide a 

constitutive law at the macroscale. Although this approach allows 

more general multi-scale problems to be taken into account, it is 

highly computationally expensive. 

The asymptotic homogenization theory documented in Arbogast 

et al. (1990) , Bensoussan et al. (2011) , Papanicolau et al. (1978) , 

Sánchez-Palencia (1980) permits equivalent properties to be ob- 

tained and allows an analytic and a numerical approach to be com- 

bined. Based on asymptotic expansions (applied to a parameter e 

that relates the characteristic lengths of the two, well-separated, 

scales), the homogenized problem can be solved on a generic 

micro-structural cell (solved using, e.g. finite elements Auriault, 

2011 ) so that the homogenized macroscopic properties are finally 

obtained. 

The proposed approach is developed herein with the purpose 

of determining the overall poroelastic properties of a saturated 

cracked deformable porous medium in the framework of small 

strains. We consider the deformation and the porous flow of the 

medium to be governed by Biot’s equations of poroelasticity. The 

cracks are thin enough to be considered as curved lines (sur- 

faces in 3D) and interconnected, forming a periodic-network. From 

a mechanical viewpoint, a crack is here considered (differently 

from other approaches, e.g. Pensée et al., 2002 ) as an infilled 
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discontinuity containing a soft poroelastic material that can un- 

dergo damage. This corresponds to a weakened elastic zone allow- 

ing its two lips to slip and to move apart. The relative motion of 

the lips induces a change of the porosity of the crack and conse- 

quently a change in the fluid flow. Crack propagation is not treated 

and the opening of cracks is considered to damage the material, 

thus affecting the transport properties of the medium. This latter 

point is consistent with the proposed upscaling procedure (based 

on asymptotic homogenization) that naturally leads to two uncou- 

pled hydraulic and mechanical problems. It is worth noting that 

the methodology is not adapted to situations where crack propa- 

gation matters. In the case of a hydro-mechanical problem, crack 

propagation induces a sudden change of the stress/strain field that 

also affects the pressure field (see Pizzocolo et al., 2013; Schrefler 

et al., 2015 ). The proposed model is therefore aimed to treat sta- 

tionary hydraulic cases rather than transitory states. 

In other terms, the upscaling method is aimed at obtaining a 

material constitutive law for an REV of a porous medium charac- 

terized by infilled discontinuities. The numerical behavior law can 

be finally embedded in any multiscale approach (e.g. Kouznetsova 

et al., 2001 ) so that real-scale geomechanics or engineering prob- 

lems can be treated. 

The first part of the paper presents the equations governing 

the coupled hydro-mechanical problem in the porous matrix and 

the cracks. The asymptotic homogenization is detailed and the fi- 

nal equations describing the macro-scale problem are presented. In 

the second part of the paper, the homogenized problem is numeri- 

cally solved first for the linear case. As a further step, damage is in- 

troduced, which makes the problem non-linear. The proposed nu- 

merical implementation allows to reproduce any stress/strain load- 

ing history: two cases are considered, the first using a strain con- 

trolled path (i.e. oedometric test) and the second using a mixed 

stress/strain condition (i.e. biaxial test). A constitutive non-linear 

material law can then be obtained for any loading history. 

Notations. 

• The ”usual” vectors: positions, normal, tangent, forces, flows, . . . 

are denoted: � x , � y , � n , � τ , � u , � v , � T , � q , ... { � e 1 , � e 2 , � e 3 } is an orthonor- 

mal basis. 

• The dot symbol · denotes the simple contraction between two 

tensors of any order: � T � � v , � T = σ � �
 n , ... 

• The colon symbol : denotes the double contraction of two sec- 

ond order tensors: σ : ∇ 

�
 v , c : ε( � u ) , ... 

• The tensor product � a � �
 b denotes the linear application defined 

by: ∀ 

�
 c , 

(
�
 a � �

 b 
)

� � c = 

(
�
 b � � c 

)
�
 a . 

• 
−−→ 

grad f denotes the gradient of the scalar function f , ∇ 

�
 u is the 

gradient of the vector field 

�
 u and ε( � u ) denotes the strain tensor 

associated to the displacement field 

�
 u , i.e. the symmetrical part 

∇ 

�
 u S of ∇ 

�
 u . The gradients of a field of two space variables � x and 

�
 y are distinguished by an exponent: 

−−→ 

grad 

x f, ∇ 

y �
 v . 

• Whenever the index notation of tensors is used, the Einstein 

notation for the contraction of tensors is adopted. 

2. Description of a saturated cracked deformable porous 

medium 

2.1. Description of the medium and strong form of the equations 

Let us consider a cracked deformable and saturated porous 

medium occupying, in the small strain framework, a domain �. 

For the sake of simplicity the study is carried out in two dimen- 

sions; an extension to 3D is straightforward but is not presented 

in the following for sake of clarity of the notations. However, some 

hints about the 3D modeling are given. 

The porous parts of the medium are separated by cracks which 

are curves that joint at points (see Fig. 1 ); � denotes the set of 

all cracks of the medium. To make the writing of the equations of 

the poroelasticity of the cracks precise, the cracks are (arbitrarily) 

oriented, let s denote the curvilinear abscissa along a crack and 

�
 τ

its unit vector, assuming the crack is smooth. The unit normal � n to 

a crack is the vector obtained by the rotation of angle + 

π
2 of the 

tangent vector � τ . 

The considered porous medium is assumed to be finely pe- 

riodic. That means, on one hand, that the space distribution of 

cracks is periodic (see Fig. 1 ) and, on the other hand, that the size 

of the period is small with respect to that of the medium. In the 

asymptotic expansion method of homogenization used in this pa- 

per, the ratio of the size of the period to that of the medium is 

a small parameter intended to go to 0. That means that the peri- 

odic cells of the medium are increasingly smaller. The usual way 

to handle this is to define the cells of the medium as the image of 

a given cell Y by a homothety of ratio e, e being the small param- 

eter of the asymptotic procedure (see Bensoussan et al., 2011 and 

Sánchez-Palencia, 1980 ). 

A function defined on Y is said to be Y -periodic if it takes equal 

values on opposite sides of the cell Y . 

Biot’s equations of the porous parts. In the porous parts of the 

medium �, the deformation of the medium and the flow of fluid 

are governed by Biot’s equations that read, see (see Biot, 1941; 

1955; Auriault, 2005 or Coussy, 2004 ): 

div σ = 0 (1a) 

σ = c : ε( � u ) − pα (1b) 

κ = α : ε( � u ) + βp (1c) 

div � q + ˙ κ = 0 (1d) 

�
 q = −k 

−−→ 

grad p (1e) 

where η denotes the porosity of the porous matrix. � u is the dis- 

placement field and 

˙ �
 u its time derivative, σ is the total Cauchy 

stress tensor and p is the pore pressure. � q = η
(
�
 v − ˙ �

 u 
)

is the rel- 

ative fluid flow, � v being the velocity of the fluid. c is the fourth 

order tensor of elastic stiffness, α is the second order tensor of 

Biot coefficients, β is the Biot modulus and k is the permeability 

of the medium. κ denotes the variation - due to the displacement 

�
 u - of the porosity, see Coussy (2004) , which reads in terms of the 

porosity of the porous matrix η and of its variation δη due to the 

deformation of the medium: 

κ = δη + η div � u 

Equations on the cracks. The cracks separating the porous parts of 

the medium are very soft and highly permeable. That means that 

the lips of the cracks can slide and open and, in order to main- 

tain coherence, that the stress vector �
 T = σ � �

 n is continuous on 

the cracks. The displacement field 

�
 u is then discontinuous on the 

cracks and its jump 

�
 u + − �

 u − through a crack where � u + is the value 

of � u on the side toward which 

�
 n points and 

�
 u − is the value of � u on 

the opposite side, is denoted by [ [ � u ] ] . The assumption of high per- 

meability means that fluid pressure p is continuous on the cracks 

but the fluid flow is discontinuous, the jump of the normal flow is 

[ [ � q ] ] � �
 n where [ [ � q ] ] denotes the jump of � q across the cracks. 

According to these assumptions (see Appendix A ), the poroelas- 

tic behavior of the cracks is modeled by the following equations: 

�
 T = C � [ [ � u ] ] − p � A (2a) 

κ c = 

�
 A � [ [ � u ] ] + Bp (2b) 
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