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a b s t r a c t 

This article presents an analytical method capable of resolving the coupled problem of surface cracking 

in an orthotropic elastic medium subjected to frictional contact by a rigid flat punch. Reciprocal influ- 

ences between the surface crack and the flat punch are accounted for by establishing a fully coupled 

formulation. Governing partial differential equations involving the displacement components are derived 

in accordance with plane theory of orthotropic elasticity. General solutions corresponding to mode I and 

II crack problems and contact problem are obtained employing Fourier transformation techniques. These 

separate solutions are then reconciled; and three coupled singular integral equations are developed by 

applying crack surface and contact zone conditions. Singular integral equations are solved numerically 

through an expansion–collocation method in which the primary unknowns are expanded into series in 

terms of Jacobi polynomials. Comparisons to the results available in the literature for certain special cases 

do verify the proposed procedures. Further numerical results are presented to be able to demonstrate the 

influences of material orthotropy, coefficient of friction, and geometric parameters upon the mixed-mode 

stress intensity factors and the contact stress. 

© 2016 Elsevier Ltd. All rights reserved. 

1. Introduction 

Quite a large number of engineering materials utilized in tech- 

nological applications possess an orthotropic macro-structure. Or- 

thotropy is a reduced type of general anisotropy, which stems from 

the existence of two orthogonal planes of elastic symmetry within 

a medium. It is encountered not only in conventional composites 

like fiber reinforced plates and shells but also in newer material 

systems such as thin films and coatings. Orthotropy in thin films 

is a result of the processing method. For instance, electron beam 

physical vapor deposition induces a columnar thin film structure 

whereas plasma spray technique causes a lamellar type formation. 

Because of the importance and common usage of orthotropic ma- 

terials in both conventional and arising fields of technology, there 

is a vast amount of literature on related mechanics problems, par- 

ticularly on contact and fracture mechanics. 

Solutions in literature on contact mechanics of orthotropic ma- 

terials depict a clear picture of the influences of material prop- 

erties and loading parameters on stress distributions. Certain fun- 

damental findings on contact mechanics of anisotropic half-planes 

are compiled in the book by Kachanov et al. (2003) . More recent 
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advances in contact mechanics of orthotropic media include de- 

velopments pertaining to indentation ( Shi et al., 2003 ), Hertzian 

contact ( Swanson, 2004 ), frictional moving punch problems ( Zhou 

et al., 2014 ), and contact with collinear stamps ( Dong et al., 2014 ). 

Results on fracture mechanics of orthotropic materials are essen- 

tial to quantify critical and sub-critical crack propagation phe- 

nomena. For this reason, stress intensity factors (SIFs) are com- 

puted for a variety of crack configurations. Newer results regard- 

ing such research work are generated for multiple interacting 

cracks ( Baghestani et al., 2013 ), an edge cracked orthotropic strip 

( Matbuly and Nassar, 2003 ), a dynamically loaded cracked half- 

plane ( Monfared and Ayatollahi, 2012 ), an inclined crack in an in- 

finite medium ( Nobile et al., 2004 ), and thermally loaded collinear 

cracks ( Zhong et al., 2013 ). 

Certain types of cracking failures in engineering materials re- 

quire simultaneous consideration of fracture and contact problems. 

This is especially the case for brittle materials under the effect of 

severe contact loadings. Primary cracking mechanisms in the vicin- 

ity of contact zones in such materials are: Radial cracking due 

to Vickers indentation ( Page and Knight, 1989 ), Hertzian crack- 

ing due to loading by a blunt indenter ( Lawn, 1995 ), and her- 

ringbone cracking due to sliding frictional contact ( Suresh et al., 

1999 ). Moreover, surfaces subjected to oscillating frictional forces 

tend to develop fretting fatigue cracks ( Nesladek et al., 2012; Hills 

and Nowell, 2014 ). Studies on the behavior of cracks located in the 
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vicinity of a contact zone are required to understand these failure 

mechanisms. Analytical research work has been undertaken to ex- 

amine fracture in isotropic homogeneous and functionally graded 

materials caused by sliding frictional contact ( Hasebe et al., 1989; 

Hasebe and Qian, 1998; Dag, 2001; Dag and Erdogan, 2002 ). How- 

ever, there has been no prior work on such problems in orthotropic 

materials. 

Formulation of the problem of cracking due to sliding contact 

for orthotropic materials is substantially different from those de- 

veloped for isotropic homogeneous and functionally graded ma- 

terials. Constitutive relations of orthotropic materials contain four 

elastic constants in the case of plane stress, and seven in the case 

of plane strain. Two elastic constants and an inhomogeneity pa- 

rameter are needed for FGMs; whereas for the isotropic homo- 

geneous case specification of two elastic constants suffices. Dis- 

tinct structure of the constitutive law leads to a different set of 

partial differential equations for orthotropic materials. Application 

of Fourier transform techniques then results in completely differ- 

ent general solutions, which depend on the elastic constants of 

orthotropy. As a consequence, the terms and kernels of the sin- 

gular integral equations are not same as those found for isotropic 

homogeneous or functionally graded materials. For this reason, all 

formulation steps need to be reapplied for orthotropic materials; 

and general solutions and singular integral equations have to be 

derived from scratch in terms of engineering constants of plane 

orthotropy. 

The present study puts forward an analytical approach capa- 

ble of solving the coupled problem of cracking due to sliding con- 

tact in an orthotropic medium. For this purpose, a surface crack 

in an orthotropic half-plane in sliding frictional contact with a 

rigid punch is considered. Governing partial differential equations 

in terms of the displacement components are derived by employ- 

ing the elements of plane orthotropic elasticity. Crack and con- 

tact problems are formulated separately by means of Fourier trans- 

form techniques. Primary unknown functions in these formulations 

are respectively relative crack surface displacement derivatives and 

contact stress for the crack and contact problems. These two sep- 

arate formulations are then reconciled and reduced to a system of 

three coupled singular integral equations. The integral equations 

are solved numerically by an expansion–collocation technique, in 

which primary unknowns are expanded into finite series entailing 

Jacobi polynomials. Numerical analyses are carried out to compute 

mode I and II stress intensity factors and contact stress as func- 

tions of degree of orthotropy, coefficient of friction, and geometric 

parameters. 

2. Formulation 

The coupled problem of surface cracking in an orthotropic 

medium due to sliding contact is illustrated in Fig. 1 . An elastic 

orthotropic half-plane lies in the region x 1 > 0 and −∞ < x 2 < ∞ . 

x 1 - and x 2 -axes are the principal axes of orthotropy. The half-plane 

contains a crack located at x 2 = 0 ; and is in sliding frictional con- 

tact with a rigid flat punch. Contact zone extends from x 2 = b

to x 2 = c. The elastic medium is assumed to be in a state of ei- 

ther plane stress or plane strain. Normal and friction forces trans- 

ferred by the contact are respectively designated by P and Q , where 

Q = ηP, η being the coefficient of friction. 

The formulation is based on the constitutive relations of plane 

orthotropic elasticity, which are expressed as: [ 

σ11 

σ22 

σ12 

] 

= 

[ 

C 11 C 12 0 

C 12 C 22 0 

0 0 C 66 

] [ 

ε 11 

ε 22 

ε 12 

] 

, (1) 

where elements of the stiffness matrix are given by 
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Fig. 1. Geometry of the coupled problem. 

C 11 = 

⎧ ⎪ ⎨ 

⎪ ⎩ 

E 1 
1 −ν12 ν21 

, for plane stress , 

E 1 ( 1 −ν23 ν32 ) 

1 −ν12 ν21 −ν13 ν31 −ν23 ν32 −2 ν12 ν23 ν31 

, for plane strain , 

(2a) 

C 12 = 

⎧ ⎪ ⎨ 

⎪ ⎩ 

E 2 ν12 

1 −ν12 ν21 

, for plane stress , 

E 2 ( ν12 + ν13 ν32 ) 

1 −ν12 ν21 −ν13 ν31 −ν23 ν32 −2 ν12 ν23 ν31 

, for plane strain , 

(2b) 

C 22 = 

⎧ ⎪ ⎨ 

⎪ ⎩ 

E 2 
1 −ν12 ν21 

, for plane stress , 

E 2 ( 1 −ν13 ν31 ) 

1 −ν12 ν21 −ν13 ν31 −ν23 ν32 −2 ν12 ν23 ν31 

, for plane strain , 

(2c) 

C 66 = 2 μ12 , for both plane stress and strain . (2d) 

For an orthotropic material, following inequalities are deduced 

by considering the fact that strain energy density function is posi- 

tive definite ( Agarwal and Broutman, 1990 ): 

1 − ν12 ν21 > 0 , 1 − ν13 ν31 > 0 , 1 − ν23 ν32 > 0 , (3a) 

1 − ν12 ν21 − ν13 ν31 − ν23 ν32 − 2 ν12 ν23 ν31 > 0 . (3b) 

Governing partial differential equations are derived by using the 

constitutive relations in conjunction with equilibrium equations 

and kinematic relations; and expressed as given below: 

d 11 
∂ 2 u 1 

∂x 2 
1 

+ 

∂ 2 u 1 

∂x 2 
2 

+ ( 1 + d 12 ) 
∂ 2 u 2 

∂ x 1 ∂ x 2 
= 0 , (4a) 

∂ 2 u 2 

∂x 2 
1 

+ d 22 
∂ 2 u 2 

∂x 2 
2 

+ ( 1 + d 12 ) 
∂ 2 u 1 

∂ x 1 ∂ x 2 
= 0 , (4b) 

d 11 = 

2 C 11 

C 66 

, d 12 = 

2 C 12 

C 66 

, d 22 = 

2 C 22 

C 66 

. (4c) 

u 1 and u 2 here are the scalar components of the displacement vec- 

tor in x 1 - and x 2 -directions, respectively. The solution has to satisfy 
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