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a b s t r a c t 

Higher order strain and stress tensors encompassed within gradient elasticity theories are discussed with 

a particular concern to the physical meaning of double and triple stresses. A single rule is shown to 

hold for the physical interpretation of the indices of a higher order stress tensor both within distortion 

gradient and strain gradient theories, whereas the analogous Mindlin’s rule holds only within distortion 

gradient theories. Double and triple stresses are discussed separately with the aid of simple illustrative 

examples. A corrigendum to a previous paper by the author (IJSS 50 (2013) 3749–3765) is also presented. 
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1. Premise 

Gradient theories of solid mechanics (elasticity, plasticity, dam- 

age mechanics and the like) are nowadays accepted by the research 

community as effective analytical tools to address a large variety 

of structural problems in which the effects of the micro-structural 

inhomogeneities cannot be disregarded. As it emerges from the re- 

lated extensive literature (see e.g. the review papers by Askes and 

Aifantis, 2011; Javili et al., 2013 ; and the book by Gurtin et al., 

2010 ), these gradient theories involve complex concepts of strain 

and stress states which need the use of tensors of order higher 

than two, to which researchers are likely not well acquainted. 

In particular within elasticity, two different types of deforma- 

tion gradient theories have emerged, of which one is featured by 

a strain energy function depending on the strain, ε ij , along with 

the gradient(s) of the (compatible) distortion, h ij := ∂ i u j , ( Mindlin, 

1965; Mindlin and Eshel, 1968; Wu, 1992 ); the other is featured 

by a strain energy function depending on the strain, ε ij , and on 

its gradient(s) ( dell’Isola et al., 2009; Exadaktylos and Vardulakis, 

20 01; Lazar et al., 20 06; Polizzotto, 2013 ). These gradient elas- 

ticity theories were distinguished by Mindlin and Eshel (1968) as 

Form I and Form II theories, respectively, but more frequently they 

are both referred to as “strain gradient elasticity” theories within 

the literature. For more clarity, the above theories are here dis- 

tinguished with the names of distortion gradient elasticity (DGE) 
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theory the former, strain gradient elasticity (SGE) theory the lat- 

ter. 1 These theories lead to boundary-value problems featured by 

a same displacement partial differential equation system ( Mindlin, 

1965; Mindlin and Eshel, 1968 ), however the inherent notions of 

double and triple stresses exhibit conceptual and qualitative differ- 

ences which are in general not sufficiently clarified. Recently, the 

symmetry features associated to the mentioned Form I and Form II 

were addressed by Gusev and Lurie (2015) in a variational formula- 

tion for a simplified isotropic material model of gradient elasticity 

endowed with only four constants (including the Lamé ones). 

Explanations on the subject of higher order tensors as represen- 

tations of double (or dipole) and triple (or quadrupole) stresses are 

available in the literature (see e.g. Gronwald and Held, 1993; Jaun- 

zemis, 1967; Lazar and Maugin, 2005 ; Love, 1927 ; Mindlin, 1964 ). 

More recently, the present author addressed the subject in ques- 

tion with a particular concern to the extra indices of the higher 

order stress tensors, which represent the lever arm(s) of the dou- 

ble and triple stresses, see Appendix B in Polizzotto (2013) . The 

purpose of the present note is to provide a further contribution 

aimed at improving the physical interpretation of the higher or- 

der strain and stress tensors, making a clear distinction between 

DGE and SGE theories. A second gradient theory will be consid- 

ered, which will give us the opportunity to revise the content 

of Appendix B in Polizzotto (2013) . The question of which model 

1 In the literature, the wording “second displacement gradient” is often used in 

place of the nonstandard “(first) distortion gradient”. The two parallel concepts of 

“distortion” and “strain” are here believed to be more suitable to distinguish the 

above twin theories from each other, since these theories ultimately are each a par- 

ticular form of second displacement gradient theory. 
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among DGE and SGE may be better than the other is not discussed 

in the present work. For presentation clarity, a non-standard self- 

explaining nomenclature is introduced. 

2. Introductory concepts and basic analytical relations 

In the following, a continuum referred to Cartesian orthogonal 

axes, say x i , (i = 1 , 2 , 3) , is considered along with the standard in- 

dex notation. 

2.1. Distortion gradient elasticity (DGE) theory 

The DGE theory is centered on a (Helmholtz) strain energy 

function as, say, ψ d = ψ d (ε i j , ∂ i h jk , ∂ i ∂ j h kl ) , where h ij := ∂ i u j is 

the (compatible) distortion tensor and ε i j = h (i j) := 

1 
2 (∂ i u j + ∂ j u i ) 

is the standard strain tensor. The tensor variables ε ij , η
(1) 
i jk 

:= ∂ i h jk 

and η(2) 
i jkl 

:= ∂ i ∂ j h kl describe basic deformation states of the generic 

volume element, namely: ε ij , a uniform strain within the whole 

volume element; η(1) 
i jk 

, a distortion h jk linearly varying in the x i di- 

rection; η(2) 
i jkl 

, a distortion h kl varying bi-linearly in the x i and x j 

directions. 2 

The distortion gradient variables η(1) 
i jk 

and η(2) 
i jkl 

possess the fol- 

lowing symmetry features: η(1) 
i jk 

= ∂ i ∂ j u k is symmetric with respect 

to the first index pair ( i, j ), hence it contains 3 ×6 = 18 independent 

components, whereas η(2) 
i jkl 

= ∂ i ∂ j ∂ k u l is symmetric with respect to 

the (first) index triple ( i, j, k ), hence it has 3 ×10 = 30 independent 

components 3 ( Mindlin, 1965 ). Both η(1) 
i jk 

and η(2) 
i jkl 

are not symmet- 

ric with respect to their own last index pair. 

The stress state corresponding to a given deformation state is 

determined by the partial derivatives of ψ d , that is, 

σi j = 

∂ψ d 

∂ε i j 

, τ (1) 
i jk 

= 

∂ψ d 

∂η(1) 
i jk 

, τ (2) 
i jkl 

= 

∂ψ d 

∂η(2) 
i jkl 

(1) 

which are the constitutive equations for the standard stresses σ ij , 

the double stresses τ (1) 
i jk 

, 4 and the triple stresses τ (2) 
i jkl 

, all of which 

possess symmetry features like the corresponding work-conjugate 

strain-like variables. The stress power W d = 

˙ ψ d proves to be ex- 

pressed as 

W d = σi j ˙ ε i j + τ (1) 
i jk 

˙ η(1) 
i jk 

+ τ (2) 
i jkl 

˙ η(2) 
i jkl 

(2) 

The stresses (1) , together with the so-called total stress defined 

as 

S i j := σi j − ∂ p τ
(1) 
pi j 

+ ∂ p ∂ q τ
(2) 
pqi j 

(3) 

are all required to satisfy the field and boundary equilibrium equa- 

tions, for which we refer to Mindlin (1965) and Mindlin and Eshel 

2 For an (m + n ) th order tensor, A , equal to the m th order gradient of a n th or- 

der tensor B , a rule often adopted in the literature (e.g. Exadaktylos and Vardu- 

lakis, 2001; Fleck and Hutchinson, 1997; Mindlin and Eshel, 1968 ) is followed here, 

whereby the first m ≥ 1 indices denote the inherent gradient co-ordinates, that is, 

A i 1 ...i m j 1 ... j n = ∂ i 1 ...∂ i m B j 1 ... j n , but many researchers (e.g. dell’Isola et al., 2009; Lazar 

et al., 2006 ) prefer to locate the mentioned indices in the last positions within the 

index string of A , such as to read A j 1 ... j n i 1 ... i m = ∂ i 1 ...∂ i m B j 1 ... j n . 
3 The number of independent components of η(2) 

i jkl 
is equal to the product of the 

numbers of the analogous components of a fully symmetric third order tensor (10) 

and of a vector (3). The independent components η(2) 
i jkl 

can be recognized to be of 

the type: 3 × 3 = 9 components of the type ( iiil ), 6 × 3 = 18 of the type ( ijjl ), 1 × 3 = 

3 of the type ( ijkl ), in which i � = j � = k, (no sum on repeated indices). 
4 A symbol with a superscript (1) to denote a “double” stress may appear inap- 

propriate. The superscript (1) on such a symbol just means that the double stress is 

associated to a “first” strain-like variable and possesses “one” lever arm. The same 

holds for the superscript (2) used for a triple stress, the latter being related to a 

“second” strain-like gradient and endowed with “two” lever arms. 

(1968) . Here we only observe that, since τ (1) 
i jk 

and τ (2) 
i jkl 

, like the 

work-conjugate variables η(1) 
i jk 

and η(2) 
i jkl 

, are not symmetric with re- 

spect to their own last index pair, then the total stress S ij in (3) is 

not symmetric . 

For possible choices of the function ψ d in terms of invariants 

of the tensors ε i j , η
(1) 
i jk 

, η(2) 
i jkl 

we refer to Mindlin (1965) and Mindlin 

and Eshel (1968) . 

2.2. Strain gradient elasticity (SGE) theory 

The SGE theory is centered on a (Helmholtz) strain energy func- 

tion as ψ s = ψ s (ε i j , ∂ i ε jk , ∂ i ∂ j ε kl ) . The basic deformation states of 

the material element are described by ε ij (uniform strain within 

the element), ε (1) 
i jk 

:= ∂ i ε jk (strain ε jk linearly varying in the x i di- 

rection), and ε (2) 
i jkl 

:= ∂ i ∂ j ε jk (strain ε jk bi-linearly varying in the x i 

and x j directions). 

The strain gradient variables ε (1) 
i jk 

and ε (2) 
i jkl 

are symmetric with 

respect to their own last index pair, the second one also with re- 

spect to the first index pair ( i, j ), therefore they possess, respec- 

tively, 3 × 6 = 18 and 6 × 6 = 36 independent components 5 

( Lazar et al., 2006 ). The tensor ε (1) 
i jk 

is not invariant with respect to 

interchanges of the first index i with anyone within the last index 

pair (except, obviously, in the case i = j and/or i = k ); the same can 

be stated for ε (2) 
i jkl 

, in the sense that none of the first two indices 

can be interchanged with anyone within the last index pair. 

The stress state corresponding to a given set of strain-like vari- 

ables is obtained as 

σi j = 

∂ψ s 

∂ε i j 

, σ (1) 
i jk 

= 

∂ψ s 

∂ε (1) 
i jk 

, σ (2) 
i jkl 

= 

∂ψ s 

∂ε (2) 
i jkl 

(4) 

which are the constitutive equations for the standard stress σ ij , the 

double stress σ (1) 
i jk 

, and the triple stress σ (2) 
i jkl 

, all of which possess 

the same symmetry features as the related work-conjugate strain- 

like variables. Indeed, the same nomenclature is used in the lit- 

erature for both stress sets (1) and (4) . The stress power W s = 

˙ ψ s 

proves to be expressed as 

W s = σi j ˙ ε i j + σ (1) 
i jk 

˙ ε (1) 
i jk 

+ σ (2) 
i jkl 

˙ ε (2) 
i jkl 

(5) 

The stresses (4) together with the related total stress defined as 

T i j := σi j − ∂ p σ
(1) 
pi j 

+ ∂ p ∂ q σ
(2) 
pqi j 

(6) 

must satisfy the field and boundary equilibrium equations, for 

which we make reference to Polizzotto (2013) . We note that, since 

in (6) the variables σ (1) 
i jk 

and σ (2) 
i jkl 

are symmetric with respect to 

their own last index pair, then the total stress T ij of (6) is sym- 

metric . The latter property makes the strain-gradient based ap- 

proach to gradient elasticity preferable to the analogous distortion- 

gradient based one. 

A simple example of Helmholtz strain energy function for SGE 

can be expressed in the form 

ψ s = 

1 

2 

C i jkl 

[
ε i j ε kl + (� 1 ) 

2 ∂ p ε i j ∂ p ε kl + (� 2 ) 
4 ∂ p ∂ q ε i j ∂ p ∂ q ε kl 

]
(7) 

where � 1 and � 2 are internal length scale parameters and C ijkl is 

the usual moduli tensor of isotropic elasticity, that is, denoting by 

λ, μ the Lamé constants, 

C i jkl = λδi j δkl + μ(δik δ jl + δil δ jk ) (8) 

5 The tensor ε (2) 
i jkl 

= ∂ i ∂ j ε kl , with ε kl being an arbitrary (symmetric) strain tensor, 

has 6 × 6 = 36 independent components, as stated above. If instead ε kl is compat- 

ible, i.e. ε kl = u (k,l) , then the tensor ε (2) 
i jkl 

= 

1 
2 
(∂ i ∂ j ∂ k u l + ∂ i ∂ j ∂ l u k ) has (30 + 30) / 2 = 

30 independent components, just like η(2) 
i jkl 

. Indeed, the compatibility conditions 

make ε (2) 
i jkl 

have the same number (30) of independent components as η(2) 
i jkl 

. 
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