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a b s t r a c t 

We investigate the swelling–induced bending of a gel bilayer beam with homogeneous beam–like com- 

ponents, when the beam is embedded in a solvent bath of assigned chemical potential. We set the prob- 

lem within the limits of finite elasticity with large distortions, with these latter determined via chemical 

equilibrium, by the elastic modulus of the gel, the chemical potential of the bath and the solvent–gel 

interaction parameter. We borrow our method of solution from finite bending of soft and incompressible 

beams, and get a non dimensional nonlinear equation governing the solution of the problem, whose so- 

lution is validated through a campaign of numerical experiments based on a complete stress–diffusion 

model. 

© 2016 Elsevier Ltd. All rights reserved. 

1. Introduction 

Soft active materials have been largely employed to realize 

systems in which deformations and displacements are triggered 

through a wide range of external stimuli such as electric field, 

temperature, and solvent absorption ( Fang et al., 2008; Kim et al., 

2012; Nardinocchi and Pezzulla, 2013; Pandey and Holmes, 2013; 

Teresi and Varano, 2013 ). In particular, in gel-based actuators the 

shape and the size of the system are related to the spatial distri- 

bution of solvent inside the gel and to the magnitude of the sol- 

vent uptake. It was recently demonstrated that gel systems which 

present non homogeneous elastic modulus (hence, swelling ra- 

tio), can generate distinguished deformation patterns under free–

swelling conditions. As an example, two-dimensional gel sheets 

can be morphed into curved surfaces whose characteristics strictly 

depend on the characteristics of the non homogeneity ( Byun et al., 

2013; Kim et al., 2012; Wu et al., 2013 ). Likewise, slender gel 

beams with elastic modulus varying along the thickness can bend 

and self-fold; in particular, this last property is attained by form- 

ing layered gel systems, with the layers having significantly differ- 

ent expansion ratios and elastic moduli. In a huge bending was in- 

duced, appropriately tuning the difference in the geometrical and 

elastic characteristics of the two layers; therein it was also shown 

that, under distinguished conditions, gel tubes can be formed by 

self-folding of bilayered gel systems. The interest in these system 
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is large, as the resulting gel tubes can be proposed for both driv- 

ing a controlled release of molecules, and realizing morphing slen- 

der structures as actuators. The finite bending of a bilayer beam 

in response to temperature was also discussed in ( Morimoto and 

Ashida, 2015 ), following the strategy set by Rivlin (1949) and, suc- 

cessively, by Bigoni (2012) , and considering the decomposition of 

the full deformation gradient into a homogeneous swelling com- 

ponent and a pure bending component, as proposed in ( Lucantonio 

et al., 2014a ). In particular, the bilayer beam was composed by one 

swellable (gel) and one not swellable (elastomer) layer; thus, the 

swelling component of the deformation gradient only interested 

the gel layer and, due to the presence of the elastomer layer, only 

an one-dimensional swelling was considered, along the beam’s 

thickness direction. 

We concentrate our investigations on layered gel beams, with 

beam-like homogeneous components. When embedded in a sol- 

vent bath, each homogeneous part would swell homogeneously, 

if it were free from the rest of the system; if the temperature 

and the chemical potential of the solvent bath were fixed, each 

part would have a uniform equilibrium swelling ratio depending 

only on its own shear modulus. When the assembly of two ho- 

mogeneous beams is considered, because of the possibly differ- 

ent shear moduli and, consequently, different equilibrium swelling 

ratios, a non-uniform equilibrium swelling is expected which re- 

sults in a global bending of the system, eventually self–folding. 

As it is well known, within the context of continuum mechanics, 

swelling-induced deformation processes can be studied through 

the so-called stress-diffusion model ( Chester and Anand, 2010; 

Hong et al., 2008; Lucantonio et al., 2013 ), which was successfully 

used by one of the Authors to describe bending of bilayered beams 
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( Lucantonio et al., 2014a ), twisting of bilayered anisotropic sheets 

( Nardinocchi et al., 2015 ), and buckling dynamics of a solvent- 

stimulated stretched elastomeric sheet ( Lucantonio et al., 2014b ). 

In ( Lucantonio et al., 2014a ), it was also shown that it is pos- 

sible to follow simplified approaches that allow effective mod- 

eling of swelling-driven large deformations in non-homogeneous 

thin structures, based on an uncoupled approach which can be set 

within the theory of finite elasticity with distortions and allows 

to establish predictive structure-function relationships for bending 

of bilayered gel composites. Therein, that approach was followed 

within the context of a one–dimensional beam theory to deter- 

mine stretching and bending of the bilayered beam. 

Here we use the same kind of approach within the context 

of the three-dimensional theory of nonlinear elasticity, and look 

for plane-strain finite bending solutions, presenting and discussing 

a method borrowed from finite bending of soft and incompress- 

ible beams ( Bigoni, 2012; Rivlin, 1949 ). Differently from previ- 

ous works, the end rotations of the beam are unknown and not 

given but it has nevertheless been possible to obtain a single, 

non-dimensional nonlinear equation governing the solution of the 

problem. This has granted a better discussion and comprehension 

of the properties of the solution. In subsequent works it may be 

also possible to use said equation for the determination of closed 

form solutions under some restrictions on the values of the input 

parameters. Our results in terms of beam stretching and curvature 

are in good agreement with the numerical solutions of the stress- 

diffusion problem of a bilayered gel beam discussed in ( Lucantonio 

et al., 2014a ), and also represent an extension of previous results 

derived with reference to bilayer beams with swellable and not 

swellable layers. Moreover, our solution of plane strain bending 

is especially interesting as it deliver an explicit solution for the 

problem and can be used for incremental bifurcation analysis (see 

e.g. Dryburgh and Ogden, 1999 ) to characterize surface instabilities 

which can start during swelling, when the top layer is much thin- 

ner and much softer than the bottom layer (as numerically shown 

in ( Lucantonio et al., 2014a )). 

The plan of our paper is the following. In Section 2 the stress- 

diffusion theory of gels is shortly reviewed and the equilibrium so- 

lutions corresponding to a gel body swelling in a solvent bath are 

presented. In Section 3 , the geometry of the problem is first de- 

fined and then the notion of elastic distortion is introduced, to- 

gether with the key elements of the three–dimensional nonlin- 

ear theory of elasticity with large distortions; the difference be- 

tween the elastic distortion and the usual growth distortion is 

highlighted. Section 4 is devoted to the solution of a preparatory 

problem concerning the finite bending of a monolayer beam su- 

perposed to an isotropic finite growth, inducing only change of 

volume; in the preparatory problem, bending and swelling (vol- 

ume change) are two uncoupled processes controlled by two inde- 

pendent parameters, and the problem is set within the context of 

the plane strain assumption. In Section 5 the finite bending super- 

posed to swelling of a bilayered beam, with homogeneous beam–

like parts subject to differential swelling is investigated, and the 

solution given in terms of both beam stretch and curvature. Fi- 

nally Section 6 discusses the results, analyzes the response for dif- 

ferent values of the input parameters, and establishes a compari- 

son with numerical solutions of the problem coming out from the 

fully three–dimensional nonlinear stress-diffusion model presented 

in ( Lucantonio et al., 2014a; 2013 ). 

2. Background 

Swelling-induced deformation processes can be fully described 

within a stress-diffusion continuum theory based on the balance 

equations for forces and solvent, on the thermodynamics inequal- 

ities restricting the class of admissible constitutive prescriptions, 

and on the choice of a free energy density which accounts for both 

the elastic and mixing contributions. Following ( Lucantonio et al., 

2013 ), we identify the gel body at the dry state with its refer- 

ence configuration B d , a region of the three–dimensional Euclidean 

space E with boundary ∂B d of unit normal m . The balance equa- 

tions of forces and solvent at equilibrium are 

div S = 0 and div h = 0 , on B d , (1) 

S m = t and μ = μext , on ∂B d , (2) 

with S, h , and μ as the reference stress, the reference solvent flux, 

and the chemical potential of the solvent within the body respec- 

tively; t as the boundary traction and μext the chemical poten- 

tial of the solvent bath. Let us note that t and μext are the ex- 

ternal agents determining swelling–driven deformation processes. 

State variables of the problem are the displacement field u from 

the reference configuration B d and the solvent concentration c per 

unit reference volume. The constitutive equations for the stress S , 

the chemical potential μ, and the solvent flux h come from stan- 

dard thermodynamical requirements, once fixed the free energy in 

the form of the Flory–Rehner free energy ( Flory and Rehner, 1943a; 

1943b ), as: 

S = 

ˆ S (F ) − p F � = G F − p F � , (3) 

μ = ˆ μ(c) + p � = 

R T 

�
h 

′ (c) + p �, 

h 

′ (c) = �
(

ln 

J − 1 

J 
+ 

1 

J 
+ 

χ

J 2 

)
, (4) 

h = 

ˆ h (F , p, c) = −D c 

RT 
C 

−1 ∇( ̂  μ(c) + p �) , C = F T F , (5) 

where 

F = I + ∇u , J = det F , F � = J F −T . (6) 

Moreover, G = NκB T ( [ G ] = Jm [ G ] = Jm 

−3 ) is the shear modulus, N 

the number of polymeric chains per unit dry volume, T ( [ T ] = K) 

the temperature, � ( [�] = m 

3 mol −1 ) the solvent molar volume, R 

( [ R ] = JK 

−1 mol −1 ) the universal gas constant, χ the dimensionless 

measure of the enthalpy of mixing and D ([D] = m 

2 /s) the diffusiv- 

ity. The field p represents the osmotic pressure within the polymer, 

when the external pressure is assumed to be zero, and constitu- 

tively couples the stress S and the chemical potential μ, due to 

the constraint J = 1 + � c which implies that both the volume of 

the solid and liquid component of the gel do not change, and that 

the change in volume of the system is only due to the variation in 

fluid mass content. 

The problem (1) –(5) admits a distinguished solution, in the 

form of a free-swelling solution: the polymer is assumed to be im- 

mersed in a solvent bath of chemical potential μext under load-free 

and constraint-free conditions and it can freely swell or shrink. The 

steady solution ( F o , c o ) is assumed to satisfy the balance of forces 

and the local thermodynamic equilibrium: 

S (X ) = 0 and μ(X ) = μext , ∀ X ∈ B d ; (7) 

the difference between μ( X ) and μext determines the driving force 

of the swelling (shrinking) process and μext is the control parame- 

ter of the deformative process. For homogeneous materials, it holds 

F o = J 1 / 3 o I and c o = 

J o − 1 

�
, (8) 

with 

G �

J 1 / 3 o 

+ R T 

(
log 

(
J o − 1 

J o 

)
+ 

1 

J o 
+ 

χ(T ) 

J 2 o 

)
= μext , (9) 

and J 1 / 3 o the free-swelling equilibrium ratio. Once fixed the tem- 

perature T and the external chemical potential μext , the swelling 
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