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a b s t r a c t 

The damping properties of unidirectional, laminated, and woven composites have been predicted using a 

multiscale implementation of the High-Fidelity Generalized Method of Cells micromechanics theory. This 

model considers periodic repeating unit cell geometries on both the global and local scales and utilizes 

the constituent material specific damping coefficients, mechanical properties, and local fields, along with 

the strain energy approach, to determine effective directional specific damping coefficients of the com- 

posite. In addition to comparisons of the HFGMC predictions with results from the literature, the effect 

of a degraded fiber/matrix interface was examined parametrically. A significant finding was that strong 

maxima exist in the predicted composite damping coefficients as a function of degree of interfacial me- 

chanical degradation. This suggests that drastic improvements in damping in composites can be achieved 

by properly engineering the fiber/matrix interface. The multiscale HFGMC simulations presented illus- 

trate that the decrease in composite mechanical properties caused by such an engineered interface can 

be minimized when implemented within a technologically relevant laminate, while still maintaining an 

extreme improvement in the laminate damping properties. 

Published by Elsevier Ltd. 

1. Introduction 

Material damping is important in the design of structures as 

it limits vibration amplitudes, increases fatigue life, and affects 

impact resistance. This is particularly true for composite mate- 

rials, which are currently used extensively in applications that 

experience frequent dynamic loading. Furthermore, the damping 

capacity of composites can be significantly greater than that of 

standard engineering materials, as described in the recent review 

paper by Treviso et al., (2015) . Like other performance parame- 

ters of composites (e.g., stiffness, strength, density) the effective 

damping capacity of composite materials are dependent on not 

only the damping properties of the constituent materials, but 

also microstructural details such as fiber volume fraction, fiber 

orientation, ply stack up, fiber packing array, and weave pattern in 

woven composites. Therefore, like other performance parameters, 

composite damping capacity can be engineered. 

The damping phenomenon in composite materials has been 

modeled using linear viscoelastic models, employing the corre- 

spondence principal to obtain the storage and loss moduli, and 

by the strain energy approach (see Treviso et al., (2015) and the 
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references cited therein). In the present investigation, a multiscale 

micromechanical method for predicting composite damping capac- 

ities, based on the strain energy approach, is presented. This ap- 

proach establishes the stored and dissipated elastic energy within 

the composite constituents, which are used to determine the 

specific damping capacities of the composite in the various direc- 

tions. An early example of this approach was presented by Ungar 

and Kerwin, (1962) . Adams and Bacon, (1973) , Ni and Adams, 

(1984) , and Adams and Maheri, (2003) employed the strain energy 

approach to examine damping of composite laminated plates and 

beams. Saravanos and Chamis, (1990) presented simplified closed- 

form equations for composite specific damping capacities resulting 

from various mixture rules. Kaliske and Rothert, (1995 ) predicted 

the specific damping capacities of composites by employing the 

micromechanical method of cells with the strain energy approach 

( Aboudi, 1991 ), showing good agreement with test data. Chandra 

et al. (2002 ) compared the damping predictions of various mi- 

cromechanical models, including strain energy approach applied to 

the finite element method. Tsai and Chi, (2008 ) utilized the gen- 

eralized method of cells to predict the composite specific damping 

capacities, demonstrating good agreement with finite element 

predictions based on the strain energy approach. In addition, the 

investigation of El Mahi et al., (2008 ) employed the strain energy 

approach in conjunction with the finite element method to ex- 

amine damping in composite laminates, showing good agreement 

with measured results. Of course, by attributing all damping in a 
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composite to the dissipated energy in the constituent materials, 

the strain energy approach does not explicitly account for certain 

in situ damping mechanisms that could be present, such as matrix 

cracking, interfacial debonding, and free motion of the phases. 

Finegan and Gibson, (20 0 0 ) investigated the damping proper- 

ties of a composite composed of epoxy matrix reinforced by cop- 

per wires, with a high damping interface. The results of elasticity, 

finite element, and mechanics of materials approaches were com- 

pared to experimental damping measurements as a function of the 

interface and fiber volume fractions. 

The multiscale micromechanical method presented herein is 

based on the High-Fidelity Generalized Method of Cells (HFGMC) 

micromechanics theory Aboudi et al., (2013 ) in combination with 

the aforementioned strain energy approach for the modeling of 

damping. The triply-periodic High-Fidelity Generalized Method 

of Cells is first enhanced to enable coupled multiscale anal- 

ysis, wherein both the local (fiber/matrix/interface constituent) 

and global (laminate/woven) scales are synergistically linked. The 

HFGMC method determines the strain (or stress) concentration 

tensors, which are used to establish the macroscopic constitutive 

equations of the composite, and also to provide the local stress and 

strain fields throughout the composite. This enables the prediction 

of not only effective composite properties, but also the strain en- 

ergy distributions (and thus specific damping coefficients) in re- 

sponse to given external loading. The present multiscale HFGMC 

implementation considers an arbitrary number of local repeating 

unit cells (RUCs), which consist of the composite constituent ma- 

terials (e.g., fiber, matrix, and interface). These local RUCs are then 

arranged in a global RUC, whose mechanical and damping proper- 

ties represents that of the multiscale composite material. 

This multiscale HFGMC model is applied to predict the specific 

damping coefficients of unidirectional, laminated, and woven poly- 

mer matrix composites with and without degraded fiber-matrix 

interfaces. Herein these interfaces are treated as a distinct third 

phase separating the fiber and the matrix, with its own variable 

damping and mechanical properties. It should be noted that the 

present investigation utilizes a two scale analysis, but the method- 

ology could be generalized to admit an arbitrary number of scales, 

as has been done in the case of the Multiscale Generalized Method 

of Cells ( Aboudi et al., 2013, Liu et al., 2011, Liu and Arnold, 2013, 

Bednarcyk et al., 2015 ). 

2. Multiscale High-Fidelity Generalized Method of Cells 

In order to model the effect of damping in composite mate- 

rials that involve multiple microstructural scales (e.g., laminates, 

woven composites), the High-Fidelity Generalized Method of Cells 

(HFGMC) micromechanical model has been implemented in a two- 

scale framework. These two scales are referred to as global and 

local, see Fig. 1 . The global scale ( Fig. 1 b) represents a repeating 

unit cell of a periodic composite material, whose constituents may 

be themselves periodic composite materials. Thus, the local scale 

( Fig. 1 c) represents the RUCs present within the global scale con- 

stituents. Obviously, coordinate transformations are required when 

passing tensor quantities from one scale to the other. 

2.1. Global scale analysis 

The HFGMC theory, which has been fully described by Aboudi 

et al. (2013 ), considers a composite material with triply-periodic 

microstructure, Fig. 2 (a), wherein periodicity conditions are en- 

forced in all three Cartesian coordinate directions. The global re- 

peating unit cell (RUC), Fig. 1 (b), defined with respect to local co- 

ordinates ( Y 1 , Y 2 , Y 3 ), is divided into N A , N B , and N � global subcells 

in the Y 1 , Y 2 , and Y 3 directions, respectively. Each global subcell is 

labeled by the indices (AB �) with A = 1, …, N A , B = 1, …, N B and 

�=1, …, N � , and may contain a distinct homogeneous material or 

a composite material. The dimensions of the RUC are D, H, and L, 

whereas the dimensions of global subcell (AB �) in the Y 1 , Y 2 , and 

Y 3 directions are denoted by D A , H B , and L � , respectively. A coordi- 

nate system ( ̄Y (A ) 
2 

, ̄Y (B ) 
2 

, Ȳ (�) 
3 

) is introduced in each subcell whose 

origin is located at its center. 

2.1.1. Global scale mechanical analysis 

The global subcell nonlinear elastic constitutive equation of the 

anisotropic material is given in an incremental form by, 

�σ (AB �) 
i j 

= C (AB �) 
i jkl 

�ε (AB �) 
kl 

(1) 

where �σ (AB �) 
i j 

, �ε (AB �) 
kl 

, and C (AB �) 
i jkl 

are the components of the 

stress increment, strain increment, and instantaneous (tangent) 

stiffness tensors of global subcell (AB �), respectively. 

The basic assumption in HFGMC is that the increment of 

the displacement vector �U 

(AB �) 
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in each global subcell is repre- 

sented as a second-order expansion in terms of its coordinates 
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where �ε̄ i j are the applied (external) average strain increments, 

and the unknown terms �W 

(AB �) 
i (lmn ) 

must be determined from the 

fulfillment of the equilibrium conditions, the periodic boundary 

conditions, and the interfacial continuity conditions of displace- 

ments and tractions between global subcells. The periodic bound- 

ary conditions ensure that the increments of displacement and 

traction at opposite surfaces of the global RUC are identical. A prin- 

cipal ingredient in the HFGMC micromechanical analysis is that all 

these conditions are imposed in the average (integral) sense. 

As a result of the imposition of these conditions, a linear system 

of algebraic equations is obtained, which can be represented in the 

following form: 

K �V = �F (3) 

where the matrix K contains information on the global geome- 

try and instantaneous properties of the materials (or composites) 

within the individual subcells (AB �), and the displacement vec- 

tor increment, �V, contains the unknown displacement coefficients 

�W 

(AB �) 
i (lmn ) 

, which appear on the right-hand side of Eq. (2) . The 

vector �F contains information on the applied average strain in- 

crements �ε̄ i j . The solution of Eq. (3) enables the establishment 

of the following localization relation which expresses the average 

strain increments �ε̄ (AB �) 
i j 

in the global subcell (AB �) to the exter- 

nally applied average strain increments �ε̄ i j in the form, 

�ε̄ (AB �) 
i j 

= A 

(AB �) 
i jkl 

�ε̄ kl (4) 

where A 

(AB �) 
i jkl 

are the instantaneous global strain concentration ten- 

sor components, of the subcell (AB �). 

The final form of the effective incremental constitutive law of 

the multi-phase composite, which relates the average stress incre- 

ments �σ̄
i j 

and strain increments �ε̄ kl , is established as follows: 

�σ̄i j = C ∗i jkl �ε̄ kl (5) 
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