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a b s t r a c t 

In this paper the frictionless, adhesive contact between a rigid spherical indenter and an elastic multi- 

layer coated half-space was investigated by means of an integral transform formulation. The indented 

multi-layer coats were considered as made of isotropic layers that are perfectly bonded to each other and 

to an isotropic substrate. The adhesive interaction between indenter and contacting surface was treated 

as Maugis-type adhesion to provide general applicability within the entire range of adhesive interactions. 

By using a transfer matrix method, the stress–strain equations of the system were reduced to two cou- 

pled integral equations for the stress distribution under the indenter and the ratio between the adhesion 

radius and the contact radius, respectively. These resulting integral equations were solved through a nu- 

merical collocation technique, with solutions for the load dependencies of the contact radius and inden- 

tation depth for various values of the adhesion parameter and layer composition. The method developed 

here can be used to calculate the force-distance response of adhesive contacts on various inhomogeneous 

half-spaces that can be modeled as multi-layer coated half-spaces. 

© 2016 Elsevier Ltd. All rights reserved. 

1. Introduction 

The importance of contact mechanics at small scales gained 

new relevance from the perspective of its ubiquitous presence 

and usage in micrometer- and nanometer-scale applications and 

measurements. As an example, micro- and nano-electromechanical 

systems include parts that use contact mechanics to perform their 

operations. As such, their life-time functionality relies on designs 

that make use of contact mechanics and stay free of its pervasive 

effects (e.g. adhesion, fatigue, etc.). It is also important to have 

precise and accurate characterization of the mechanical properties 

of the materials and structures of these devices. The methods 

and techniques developed for micrometer and nanometer-scale 

mechanical property characterization (e.g. instrumented inden- 

tation testing, atomic force microscopy) operate also on contact 

mechanics and therefore proper understanding of the mechanics 

involved in measurements is necessary to extract the mechanical 

properties of the materials tested. 

Important elastic, viscous, and plastic properties of mate- 

rials at micrometer and nanometer scales are retrieved from 
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indentation-type measurements that directly probe the contact 

mechanical response of materials. In general, these measurements 

(e.g. instrumented indentation testing Oliver and Pharr, 1992 

and force-distance by atomic force microscopy Radmacher et al., 

1994; Butt et al., 2005) provide control and measurement of the 

contact force between an indenter and the surface probed and 

the relative deformation sustained by indenter and surface. These 

two measured quantities, applied force and indentation depth, are 

then used in a contact mechanical model to inversely calculate 

parameters like elastic modulus, hardness, adhesive forces, etc. It 

is thus important to understand and be able to solve the contact 

mechanics involved in such measurements. 

The first contact mechanics model proposed by Hertz in 1882 

captures the mechanics of the contact between two spherical 

elastic bodies (e.g. Johnson, 1985 ). Since then, the Hertz model 

was successfully used to describe frictionless, non-adhesive con- 

tacts between an indenter (rigid or elastic) and the surface of a 

half-space material. The problem consists of solving the stress 

and deformation fields in elastic half-space solids subjected to a 

particular load distributed over the contact area (e.g. Love, 1906; 

Gladwell 1980; Johnson, 1985 ). However, for many cases of interest 

(microelectronics, coatings, electromechanical devices, composites, 

etc.), this basic contact problem requires extension to the study 

of indentation on coated substrates, in which case the elastic field 
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within the coated layered half-space and stress distribution on the 

surface need to be solved for. Fully analytical solutions for the fric- 

tionless, non-adhesive contact problem on single- and multi-layer 

coated substrates were achieved by the integral transform method 

(Gupta and Wallowit, 1974; Yu et al., 1990; Stone, 1998; Korsunsky 

and Constantinescu, 2009; Constantinescu et al., 2013 ) and the 

method of images (Schwarzer, 20 0 0; Fabrikant, 20 06 ). Numerical 

solutions to the Hertz contact problem on single- and multi-layer 

coated substrates were obtained in various studies by means of 

finite element methods (Djabella and Arnell, 1992; Bouzakisa et 

al., 2001; Zhao et al., 2011 ). 

It was recognized also that, in many cases, the adhesive forces 

have to be incorporated in the contact model used to account for 

the surface energies of the two bodies in contact (Bradley, 1932; 

Johnson et al., 1971; Derjaguin et al., 1975 ). By considering a uni- 

form tensile stress within an adhesive annular region surround- 

ing the contact zone, Maugis (1992) proposed an adhesive con- 

tact model with general applicability through the entire range of 

the adhesive interactions. The Maugis model provides a continu- 

ous transition between the two established adhesive contact lim- 

its: the JKR approximation ( Johnson et al., 1971 ) for contacts on 

compliant materials with large surface energy and large contact ra- 

dius and the DMT approximation ( Derjaguin et al., 1975 ) for con- 

tacts on stiff materials with low surface energy and small contact 

radius, respectively. Notably, other proposed adhesive contact mod- 

els capture the JKR-DMT transition ( Greenwood and Johnson, 1998; 

Schwarz, 2003 ). 

Owning to various measurement configurations (surface force 

apparatus, atomic force microscopy) and sample geometries (thin 

films on substrates), extensions of the adhesive contact models to 

adhesive contacts on coated substrates were proposed. Thus, fi- 

nite element (Johnson and Sridhar, 2001; Sridhar and Sivashanker, 

2003; Sridhar et al., 2004 ) and semi-analytical solutions based on 

integral transform approaches were developed for adhesive con- 

tacts on coated elastic substrates (Mary et al., 2006; Sergici et al., 

2006; Barthel and Perriot, 2007; Choi, 2012 ). Although most of 

the above models were developed as extensions of the JKR theory, 

some models explicitly captured the JKR-DMT transition for adhe- 

sive contacts on coated substrates ( Sergici et al., 2006 ). Currently 

there is no analytical adhesive contact model for adhesive contacts 

on multi-layer coated substrates. 

In this paper the frictionless, adhesive contact between a rigid 

spherical indenter and an elastic multi-layer coated half-space is 

investigated by means of an integral transform formulation initially 

developed by Civelek and Erdogan (1974) for the axisymmetric 

double contact problem of an elastic layer pressed against of a 

half-space by an elastic stamp. The method was adapted by Sergici 

et al. (2006) to the contact between a spherical indenter and a 

single-layer coated substrate and is extended here to the case of 

indented multi-layer coated substrates. In this context, the adhe- 

sive interaction between the indenter and the coated surface is 

considered as Maugis-type adhesion to provide general applicabil- 

ity within the entire range of adhesive interactions. The indented 

multi-layer coat is made of isotropic layers that are perfectly 

bonded to each other and to an isotropic substrate. The elastic 

displacements and stresses in the coating layers and substrate are 

solved in terms of Papkovich–Neuber potentials and, through a 

transfer matrix method, used to express the surface displacement 

inside the contact zone and the stress at the free surface out- 

side the contact zone. The obtained mixed boundary equations 

are reduced to two coupled integral equations for the stress 

distribution induced by the indenter on the multi-layer coated 

substrate and the ratio between the adhesion radius and the 

contact radius, respectively. These resulting integral equations are 

solved through a numerical collocation technique, with solutions 

for the load dependencies of the contact radius and indentation 

depth for various values of the adhesion parameter and layer 

composition. 

The model developed here for an adhesive contact on a multi- 

layer coated substrate can be readily applied to adhesive contacts 

on inhomogeneous half-spaces that can be approximated as a se- 

ries of isotropic layers (e.g. compositionally graded materials). 

2. Contact mechanics model 

The contact geometry considered in this study is shown in 

Fig. 1 , in which a spherical rigid indenter of radius R is brought 

into contact with a multi-layer coated substrate. The coat of thick- 

ness h is made of n different layers which are perfectly bonded to 

each other and to the substrate; all the layers and the substrate are 

assumed isotropic and perfectly elastic. The contact was consid- 

ered frictionless and the adhesion between the contacting surfaces 

was modeled as a Maugis-type adhesion ( Maugis, 1992 ). This ad- 

hesive interaction assumes a constant tensile stress σ 0 acting out- 

side the contact zone where the contacting surfaces are separated 

by a distance less than h 0 . The adhesive stress σ 0 in the annular 

cohesive region ( a < r < c; a is the contact radius and c is the ad- 

hesion radius) complements the surface traction that occurs inside 

the actual contact zone ( r < a ). As such, the surface deforms under 

the action of the external load (the applied force) and the internal 

load (the stress σ 0 in the gap between indenter and surface). The 

surface displacement equates the deformation of the layer coated 

substrate, in accordance with the mechanical properties of the lay- 

ers and substrate and the stress transfer at their interfaces. In the 

following the mixed stress–strain relations in the layers and sub- 

strate are examined to determine the stress distribution under the 

indenter. 

The elastic displacements and stress fields in each isotropic ma- 

terial (layers and substrate) are expressed in terms of the har- 

monic axisymmetric Papkovich–Neuber potentials, � = ( 0 , 0 , �z ) 

and �: 
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where the index i counts the layers from i = 1 for the top layer 

(free surface at z = −h ) to i = n for the bottom layer (on top 

of the substrate) and also the substrate i = n + 1 (as shown in 

Fig. 1 , the top of the substrate is at z = 0 ). The elastic constants 

used in ( 1 ) are in terms of shear moduli μ( i ) and Poisson ratios ν( i ) 

of the materials. Alternatively, we can use Young’s moduli E (i ) = 

2 μ(i ) ( 1 + ν(i ) ) and Poisson ratios ν( i ) to relate them with the plane 

strain moduli (indentation moduli) E (i ) / (1 − ν2 
(i ) 

) of the materials. 

The partial differential equations ( 1 ) can be converted into or- 

dinary differential equations by means of the Hankel transforms 

of the Papkovich–Neuber potentials. The Hankel transforms of or- 

der zero, ( �(i ) , �(i ) ) , of the Papkovich–Neuber potentials for each 

layer i ( i from 1 to n ) and the substrate ( i = n + 1 ) are found as 

solutions of their Hankel transformed Laplacian equations: 
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