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a b s t r a c t 

The propagation of surface waves on a dielectric half-space with hexagonal symmetry is studied on the 

basis of a recent modification of the micropolar theory of electroelastic continua. The model connects 

electric polarization to macro and micro-displacements via dipole and quadrupole densities due to the 

charge distribution in the continuum particle. The differential system derived in the linear wave problem 

accounts for coupling of acoustic modes with micro-rotational modes referred to polaritons. Bleustein–

Gulyaev (BG) and Rayleigh waves are allowed in the half space and are shown to satisfy dispersion 

laws very similar to those obtained in the past from a phenomenological continuum theory of ferro- 

electrics. All the surface modes are dispersive and involve polarization via the microrotation gradient. 

The results prove the effectiveness of the present approach in order to represent electro-elastic coupling 

in dielectrics. The classical BG wave problem is recovered if microrotation gradient is neglected in the 

constitutive assumptions but the resulting mode is again dispersive. A similar reduction to the classical 

Rayleigh wave of linear elasticity allows for a flexoelectric contribution to polarization. 

© 2016 Elsevier Ltd. All rights reserved. 

1. Introduction 

Past and recent developments in continuum mechanics of elec- 

tromagnetic solids have been characterized by a relevant effort 

to account for various electromagneto-elastic couplings in di- 

electric, ferroelectric and ferromagnetic media. The most com- 

mon theories exploit polarization and magnetization as field vari- 

ables introducing suitable constitutive assumptions. Concerning 

with dielectric and ferroelectric media, effective models have been 

developed which account for polarization gradients in their con- 

stitutive settings and polarization inertia dealing with dynamical 

problems ( Maugin and Pouget, 1980; Mindlin, 1968, 1972 ). These 

theories have been supported by the analysis of atomic interac- 

tions in lattice dynamics models ( Askar et al., 1970; Pouget et al., 

1986a, 1986b ) and represent a theoretical basis for the descrip- 

tion of a great variety of static and dynamic problems ( Eringen and 

Maugin, 1990; Maugin, 1988 ). 

A different approach to electro-elastic interactions follows 

from the micromorphic theory of elastic continua ( Eringen and 

Ş uhubi, 1964a, 1964b ) where additional degrees of freedom are 

introduced to account for the internal structure of the contin- 

uum particle. The usual extensions of this model to electromag- 

netic media essentially introduce constitutive equations for po- 

larization and magnetization in terms of micro-strain measures 
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( Eringen, 1999, 2003; Lee et al., 2004 ). One of the limitations to 

the applicability of this approach arises from the occurrence of 

additional, a priori unknown, coupling coefficients, yet beside the 

enhanced number of constitutive parameters of the purely elastic 

case. A modification of micromorphic electromagneto-elasticity has 

been recently suggested in which polarization and magnetization 

are expressed in terms of internal variables via electric multipoles 

arising from the charge micro-density ( Romeo, 2011, 2012a ). The 

advantage of this approach consists in avoiding additional constitu- 

tive assumptions, allowing for a consistent micromorphic model of 

electroelastic coupling. This coupling arises from the balance equa- 

tions where the electromagnetic force and couple are directly re- 

lated to the macro and micro-strain. As in the purely elastic theory, 

the accuracy of the model depends on the number of degrees of 

freedom in the microstructure but the electroelastic mechanisms 

in both elementary or complex models are equivalent to those de- 

rived by known evolute phenomenological theories. In particular, 

the linear micropolar reduction of our model accounts for electro- 

elastic effects just explained by the polarization gradient theories 

( Mindlin, 1968; Romeo, 2012b ). 

The aim of the present work is to investigate the consequences 

of this version of micropolar electro-elasticity to the propagation 

of surface waves on a dielectric half-space with hexagonal mate- 

rial symmetry. The problem is analogous to those investigated by 

Pouget and Maugin (1981a, 1981b) , concerning Bleustein–Gulyaev 

(BG) waves and Rayleigh waves in a ferroelectric half-space with 

material symmetry induced by the intrinsic polarization. We ex- 

tend the analysis to a dielectric solid focusing to its natural 
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piezoelectric properties and assuming, for simplicity, no intrinsic 

polarization. 

The governing equations of the present continuum model are 

summarized in Section 2 where simplified constitutive assump- 

tions are chosen for the Cauchy stress and the couple stress. Here 

the dependence on microrotation and its gradient is crucial to ac- 

count for coupling of acoustic and internal rotational modes (po- 

laritons). The general boundary value problem is formulated in 

Section 3 and its decoupling into subsystems involving respec- 

tively, sagittal and non-sagittal parts of the mechanical displace- 

ment is achieved exploiting the material symmetry and a suitable 

representation of displacement and microrotation. The pertinent 

expressions for polarization P in each subsystem are given, show- 

ing that the components P 1 and P 2 belonging to the sagittal plane 

depend only on the microrotation, while P 3 also depends on strain 

gradient components. 

Looking for plane wave solutions, the BG and the Rayleigh prob- 

lems are solved respectively in Sections 4 and 5 using standard 

techniques. Both cases of free and grounded surfaces are consid- 

ered in determining the dispersion law for BG waves and the de- 

pendence of mechanical and electric fields on the depth in the 

half-space is given. Concerning with Rayleigh waves we show that, 

although in absence of acoustic–polariton coupling the solution re- 

duce to the classical elastic result, the strain gradient contribution 

to P 3 persists and represents a (not properly piezoelectric) term 

induced by the dilatational part of the mechanical deformation. 

The results are illustrated by numerical examples on wurtzite 

crystals and show a substantial agreement with the phenomeno- 

logical continuum model by Pouget and Maugin (1981a, 1981b) . 

The last section is devoted to a comparison of the present results 

on BG waves with the classical one. Here we show that a reduction 

to the classical solution can be achieved ignoring microinertia and 

the constitutive dependence on microrotation gradient. However, 

the corresponding solution keeps on a dispersive character, show- 

ing an irreducible dependence of the electromechanical coupling 

factor on frequency in BG waves. 

2. Preliminaries on a micropolar model for dielectrics 

In some previous papers ( Romeo, 2011, 2012a, 2012b ), we de- 

veloped a micromorphic model of electro-magneto-elastic continua 

based on the representation of electromagnetic forces and cou- 

ples in terms of electric dipoles and quadrupole densities. Concern- 

ing with dielectric elastic solids, under the quasi-electrostatic as- 

sumption, the balance equations and the Gauss’ law for a microp- 

olar continuum can be written in the following form (see Romeo, 

2012b ) 

ρü = ∇ · T − (p · ∇ ) ∇ ϕ − 1 

2 

(Q ∇ )[ ∇ (∇ ϕ)] 

ρJ ̈φ = τ + ∇ · μ + p × ∇ϕ + (Q ∇) × ∇ϕ 

∇ · (P − ∇ϕ) = 0 (2.1) 

where u, φ and ϕ denote, respectively, the mechanical displace- 

ment, the microrotation vector and the scalar electric potential. 

The Cauchy stress tensor T and the couple stress tensor μ account 

for the contribution of mechanical forces, according to the classical 

micropolar model, and τi = εi jk T jk ( Eringen, 1999 ), while the dipole 

density vector p and the quadrupole density tensor Q are respon- 

sible for the electric contributions to forces and couples. As usual, 

ρ denotes the mass density and J = ( tr I ) I − I , where I is the mi- 

croinertia tensor. The total polarization density P can be expressed 

in terms of p and Q as 

P = p − 1 

2 

∇ · Q . (2.2) 

Within the linear theory, the quantities p and Q are given by (see 

Romeo, 2012a ) 

p = p 

(0) − (∇ · u ) p 

(0) − p 

(0) × φ, 

Q i j = Q 

(0) 
i j 

− (∇ · u ) Q 

(0) 
i j 

− (εikl Q 

(0) 
k j 

+ ε jkl Q 

(0) 
ki 

) φl . (2.3) 

where p 

(0) and Q 

(0) denote the intrinsic dipole and quadrupole 

densities in the unstrained reference configuration. As a conse- 

quence, differently from the classical electromagnetic extensions 

of the micromorphic field theory ( Eringen, 1999; Lee et al., 2004 ) 

where a constitutive equations is introduced for P , the total polar- 

ization can be explicitly obtained from (2.2) as 

P i = p (0) 
i 

− u j, j p 
(0) 
i 

− εi jk p 
(0) 
j 

φk + 

1 

2 

u j, jk Q 

(0) 
ki 

+ 

1 

2 

(εikl Q 

(0) 
k j 

+ ε jkl Q 

(0) 
ki 

) φl, j . (2.4) 

According to both the atomistic and the microcontinuum models of 

electric polarization ( Martin, 1972; Romeo, 2015 ), a non-vanishing 

p 

(0) accounts for ferroelectricity while Q 

(0) characterizes the piezo- 

electric properties of the dielectric material. The contribution due 

to ∇( ∇ · u ) in Eq. (2.4) can be ascribed to the flexoelectric part in 

the multipole expansion of P , according to Romeo (2015) . 

The general linear micropolar theory assumes that constitu- 

tive equations for T and μ came from a strain energy which is a 

quadratic form of the strain measures u j,i + ε jik φk and φi, j . Here, 

in agreement with applications to crystal lattices ( Eringen, 1999 ), 

we simplify this hypothesis, assuming that coupling terms of these 

quantities are negligible and write 

T i j = A i jkl u l,k + εlkh A i jkl φh , μi j = B jikl φk,l , (2.5) 

where the tensors A and B comply with the following symmetries 

A i jkl = A kli j , B jikl = B kl ji . 

Here we are interested into surface waves polarized along, or or- 

thogonal to, a six-order axis of symmetry of the solid. In particular, 

we consider the non-centrosymmetric hexagonal class of symme- 

try 6 mm and retain the corresponding not null entries of A and B . 

According to the usual nine-component notation for couple of in- 

dices, we get the following independent, non-vanishing entries for 

A (see for example Sitotin and Sirotin and Shaskolskaya (1982) ) 

A 12 , A 69 , A 66 , A 13 , A 33 , A 44 , A 47 , A 77 , 

and analogous entries for B . Along with these, the matrix of the 

tensor J takes the diagonal form J = diag (J 1 , J 1 , J 3 ) . 

Concerning with the dielectric properties, we consider a piezo- 

electric, non-ferroelectric material assuming p 

(0) = 0 and the 

hexagonal structure of wurtzite compounds such as ZnS, CdS, GaN 

and other wide-bandgap semiconductors. It is easy to check that in 

this case, accounting for x 3 as the six-fold axis, the charge distribu- 

tion in the unit cell yields an off-diagonal structure of the matrix 

Q 

(0) with non-vanishing independent entries Q 

(0) 
13 

, Q 

(0) 
23 

. 

We remark that the assumption p 

(0) � = 0 does not allow a di- 

rect comparison of the present model with the phenomenolog- 

ical approach to ferroelectrics developed by Pouget and Maugin 

(1980, 1981a, 1981b) where the non-centrosymmetric structure, 

and hence piezoelectricity, is induced by the initial polarization 

p 

(0) . In fact here, a possible intrinsic polarization simply superim- 

pose to the existing piezoelectric structure of the material. 

3. Governing equations for the surface wave problem 

Let us assume that the dielectric solid occupy an half-space B 

bounded by a plane surface S and choose a Cartesian coordinate 

system ( x 1 , x 2 , x 3 ) with unit vectors e 1 , e 2 , e 3 such that e 2 = n 

be the inward normal to S and e 3 be directed along the six-order 
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