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a b s t r a c t 

Due to the strain-stiffening of polymer chains, a membrane of dielectric elastomer (DE) can reach two 

different stable equilibrium states under a static electrical load. In this paper, a theoretical model is de- 

veloped to investigate the strain-stiffening effect on the nonlinear vibration of a circular DE membrane 

subjected to electro-mechanical loading. Free vibration, steady parametric excitation and chaos of the DE 

membrane undergoing large deformation are studied respectively. We find that after a small perturbation 

the DE membrane vibrates steadily around the two stable stretches and two natural frequencies exist for 

the same loading condition. With the increase of initial perturbation energy, the amplitude–frequency re- 

sponse of free vibration shows a transition from behaving like a soft spring to a hard spring attributed to 

strain-stiffening effect. When driven by a sinusoidal voltage, the DE membrane can resonate at multiple 

frequencies of excitation around small and large stable equilibrium states respectively. Variation of the 

sinusoidal voltage may induce a sudden change from steady vibration to chaos and the critical conditions 

for the transition are numerically calculated. 

© 2016 Elsevier Ltd. All rights reserved. 

1. Introduction 

As a promising material for the artificial-muscle technology, 

dielectric elastomer (DE) has received considerable attention in 

recent years. The DEs have excellent attributes including large 

voltage-induced strains, light weight, high energy density, fast re- 

sponse, silent operation, low maintenance, and low cost ( Bauer 

et al., 2014; Brochu and Pei, 2010; Carpi et al., 2010; Pelrine et al., 

20 0 0; Wang et al., 2014 ). Subject to a voltage through the thick- 

ness, the DE membrane coated on both surfaces with compliant 

electrodes reduces in thickness and expands in area. The typical 

applications of DE transducers are soft robots ( Anderson et al., 

2012; Bar-Cohen, 2004; Nguyen et al., 2014 ), adaptive optics ( Carpi 

et al., 2011; Hanley et al., 2014; Shian et al., 2013; Wei et al., 2014 ), 

generators ( Huang et al., 2013; Kornbluh et al., 2012; McKay et al., 

2015 ), sensors ( Girard et al., 2015; Noda et al., 2014 ), resonators 

( Dubois et al., 2008 ), loudspeakers ( Heydt et al., 20 0 0; Keplinger 

et al., 2013 ) and active vibration isolation ( Jones and Sarban, 2013 ). 

For DE transducers utilizing the dynamic properties of DEs, 

such as resonators, the effect of inertia must be taken into ac- 

count. A number of studies on nonlinear dynamic performances 
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of DEs have been conducted, mostly focusing on the behaviors 

around small stable equilibrium stretch with small amplitude ( Fox 

and Goulbourne, 2008; Li et al., 2012; Park et al., 2012; Sheng 

et al., 2014; Son and Goulbourne, 2010; Zhu et al., 2010a , b ). No 

works address the nonlinear vibration around large stable equilib- 

rium stretch considering the strain-stiffening effect. 

When we stretch a rubber, it is easy to stretch it at first, but if 

the stretch is large enough, it will be increasingly hard to stretch 

it further. This can be explained from the microscopic picture: 

The rubber consists of polymer chains, each of which has a finite 

contour length. When we stretch the rubber, the polymer chains 

are elongated. With the increase of the stretch, the end-to-end 

distance of each polymer chain may approach the finite contour 

length. This will result in the steep strain-stiffening. Hence when 

a DE membrane undergoes large deformation, the strain-stiffening 

effect should be considered. 

Taking account of the strain-stiffening effect, many researchers 

have studied the behaviors of DE membranes under quasi-static 

loading both theoretically and experimentally ( An et al., 2015; 

Huang and Suo, 2011; Keplinger et al., 2012; Li et al., 2013; Lu 

and Suo, 2012; Zhao et al., 2007; Zhou et al., 2008 ). It is re- 

ported that strain-stiffening enables the DE membrane to achieve 

giant voltage-induced deformation after the snap-through insta- 

bility ( Keplinger et al., 2012; Li et al., 2013 ). Furthermore, the 

phenomenon of electromechanical phase transition has been ob- 

served in a recent experiment due to the strain-stiffening of DE 

http://dx.doi.org/10.1016/j.ijsolstr.2016.02.030 

0020-7683/© 2016 Elsevier Ltd. All rights reserved. 

http://dx.doi.org/10.1016/j.ijsolstr.2016.02.030
http://www.ScienceDirect.com
http://www.elsevier.com/locate/ijsolstr
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ijsolstr.2016.02.030&domain=pdf
mailto:tongqinglu@mail.xjtu.edu.cn
mailto:wangtj@mail.xjtu.edu.cn
http://dx.doi.org/10.1016/j.ijsolstr.2016.02.030


F. Wang et al. / International Journal of Solids and Structures 87 (2016) 70–80 71 

membrane, where a huge voltage-induced areal expansion up to 

2200% was achieved ( An et al., 2015 ). However, the significant 

strain-stiffening effect on the dynamic characteristics of a DE 

membrane is unknown. 

In this paper, a theoretical model is developed to investigate 

the strain-stiffening effect on the nonlinear vibration of a circu- 

lar DE membrane subjected to an equal biaxial dead force and a 

time-dependent voltage through the thickness. The paper is or- 

ganized as follows. Section 2 derives the governing equations. 

Section 3 introduces the small perturbation around the static equi- 

librium states. Section 4 studies the large perturbation induced 

free vibrations around the stable equilibrium states. Section 5 

shows the steady parametric excitation with sinusoidal voltages, 

especially for the cases around large stable equilibrium states. 

Section 6 analyzes the electro-mechanical stability of the double- 

well vibration, and calculates the critical conditions for the transi- 

tion from steady vibration to chaos. 

2. Governing equations 

In this section, the governing equations for a circular DE mem- 

brane subject to equal biaxial dead force and a time-dependent 

voltage are derived by using the Euler–Lagrange equation. The 

strain-stiffening effect is taken into account by employing the Gent 

material model ( Gent, 1996 ). 

Fig. 1 shows a circular DE membrane sandwiched between two 

compliant electrodes. In the reference state, the DE membrane of 

thickness H and radius R 0 is un-deformed, and each material par- 

ticle in the membrane is labeled by its distance R from the cen- 

ter O , as shown in Fig. 1 (a). In the actuated state, the membrane 

is subject to a constant radial force P uniformly distributed along 

the hoop direction, and the two electrodes are subject to a time- 

dependent voltage �( t ) through a conducting wire, as shown in 

Fig. 1 (b). Electrons flow through the conducting wire from one 

electrode to the other, and the two electrodes gain charges + Q(t) 

and −Q(t) , respectively. Due to the attraction of charges of op- 

posite signs Q ( t ) as well as the radial force P , the DE membrane 

deforms uniformly to a configuration of thickness h and radius r 0 
at time t . As a plane axisymmetric problem, the circular DE mem- 

Fig. 1. A circular membrane of dielectric elastomer deforms at two states. (a) The 

reference state, the membrane is subject to no force and no voltage, (b) the ac- 

tuated state, the membrane is subject to a dead radial force uniformly distributed 

along the hoop direction and a time-dependent voltage through the thickness. 

brane undergoes homogeneous equal-biaxial deformation, with the 

stretch λ(t) = r 0 (t) / R 0 . Hence, the material particle R occupies a 

place of coordinate r( R, t ) = λ(t) R in the actuated state. The func- 

tion r ( R, t ) specifies the time-dependent deformation of the mem- 

brane. 

The elastomer is taken to be incompressible, so that 

( r 0 (t) ) 2 h (t) = R 2 
0 
H, we have h (t) = ( λ(t) ) −2 H. The time- 

dependent equal-biaxial stresses can be written as σr (t) = 

σθ (t) = P/ ( 2 π r 0 (t ) h (t ) ) = λ(t) P / ( 2 πR 0 H ) , where σ r ( t ) and σ θ ( t ) 

are the radial stress and the hoop stress, respectively. Consider the 

DE membrane coated with electrodes as a deformable capacitor. 

The true electric field is E(t) = �(t) / h (t) = ( λ(t) ) 2 �(t) /H , and 

the true electric displacement is D (t) = Q(t) / ( π( r 0 (t) ) 2 ) . Thus 

the magnitude of charge on either electrode can be written as 

Q(t) = π( λ(t) ) 2 R 2 0 D (t) . 

The circular DE membrane, along with the mechanisms that ap- 

ply the time-dependent voltage and the dead radial force, consti- 

tutes a composite thermodynamic system. We suppose the com- 

posite exchanges energy with the rest of the world by heat, but 

is held under an isothermal condition. Moreover, if we neglect the 

viscosity of the material, the composite has two independent vari- 

ables λ( t ) and D ( t ). For an equilibrium state, the kinetic energy E k 
and the Helmholtz free energy � of the composite system should 

satisfy the Euler–Lagrange equation 

d 

dt 

(
∂L 

∂ v j 

)
− ∂L 

∂ x j 
= 0 , j = 1 , 2 , (1) 

where L = E k − � is the Lagrangian, x j denotes the two indepen- 

dent variables, x 1 = λ and x 2 = D , v j is the derivative of x j with 

respect to time t . 

Consider an annular material element between two circles of 

material particles with radius R and R + dR . When the DE mem- 

brane is in the actuated state at time t , the circle of material par- 

ticles of radius R becomes a circle of radius r ( R, t ), and the other 

circle of material particles, radius R + dR , becomes a circle of ra- 

dius r( R + dR, t ) . The annular material element of width dR in the 

reference state deforms to an annulus of width d r = λ(t) d R . Dur- 

ing actuation, the mass of the annular material element, marked by 

the position coordinate r ( R, t ), is dm = 2 πρhrdr, where ρ denotes 

the density of the DE membrane, and the velocity of the element 

can be written as ∂r( R, t ) / ∂t = R dλ(t) / dt = R v 1 . Thus, the kinetic 

energy of the composite can be integrated along the radial direc- 

tion of the DE membrane: 

E k = 

∫ r 0 

0 

1 

2 

( R v 1 ) 2 dm = 

∫ R 0 

0 

πρH R 

3 v 2 1 dR = 

πρHR 

4 
0 v 

2 
1 

4 

. (2) 

The Helmholtz free energy of the composite is the sum of 

the free energy of the membrane and the potential energy of the 

mechanisms that apply voltage and force: 

� = πR 

2 
0 HW ( λ, D ) − �Q − P r 0 , (3) 

where W ( λ, D ) is the Helmholtz free energy density of the DE 

membrane defined by the total free energy in the deformed state 

divided by the volume in the reference state. 

Substituting Eqs. (2) and (3) into Eq. (1) , we obtain the govern- 

ing equations 

ρR 

2 
0 

2 

d 2 λ

d t 2 
+ 

∂W ( λ, D ) 

∂λ
− 2 λ�D 

H 

− 2 s = 0 , (4) 

and 

∂W ( λ, D ) 

∂D 

= E, (5) 

where s = P/ ( 2 πR 0 H ) is the nominal equal-biaxial stress. 

The governing Eqs. (4) and (5) are valid for an arbitrary ma- 

terial model specified by the free energy function W ( λ, D ). In 
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