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a b s t r a c t 

In this work we derive a general model for N−phase isotropic, incompressible, rate-independent elasto- 

plastic materials at finite strains. The model is based on the nonlinear homogenization variational (or 

modified secant) method which makes use of a linear comparison composite (LCC) material to estimate 

the effective flow stress of the nonlinear composite material. The homogenization approach leads to an 

optimization problem which needs to be solved numerically for the general case of a N−phase composite. 

In the special case of a two-phase composite an analytical result is obtained for the effective flow stress 

of the elasto-plastic composite material. Next, the model is validated by periodic three-dimensional unit 

cell calculations comprising a large number of spherical inclusions (of various sizes and of two differ- 

ent types) distributed randomly in a matrix phase. We find that the use of the lower Hashin–Shtrikman 

bound for the LCC gives the best predictions by comparison with the unit cell calculations for both the 

macroscopic stress-strain response as well as for the average strains in each of the phases. The formu- 

lation is subsequently extended to include hardening of the different phases. Interestingly, the model is 

found to be in excellent agreement even in the case where each of the phases follows a rather different 

hardening response. 

© 2016 Elsevier Ltd. All rights reserved. 

1. Introduction 

The present work deals with the analytical and numerical es- 

timation of the effective as well as the phase average response of 

N−phase incompressible isotropic elasto-plastic metallic compos- 

ites. Special attention is given to particulate microstructures, i.e., 

composite materials which can be considered to comprise a dis- 

tinct matrix phase and an isotropic distribution of spherical parti- 

cles ( Willis et al., 1982 ) (or in a more general setting an isotropic 

distribution of phases ( Willis, 1977 )). In the present study, the par- 

ticles are considered to be stiffer than the matrix phase, which 

is the case in most metallic materials of interest, such as TRIP 

steels, dual phase steels, aluminum alloys and others. Such ma- 

terials, usually contain second-phase particles (e.g., intermetallics, 

carbon particles) or just second and third phase variants (e.g., re- 

tained austenite, bainite, martensitic phases). In addition, these 
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phases/particles tend to reinforce the yield strength of the com- 

posite while they usually have different strength and hardening 

behavior than the host matrix phase. 

In the literature of nonlinear homogenization there exists a 

large number of studies for two-phase composite materials. The 

reader is referred to Ponte Castañeda and Suquet (1998) , Ponte 

Castañeda (2002) , Idiart et al. (2006) , and Idiart (2008) for a re- 

view of the nonlinear homogenization schemes such as the ones 

used in the present work and relevant estimates. Nonetheless, very 

few studies exist in the context of three- or N−phase rate indepen- 

dent elasto plastic composites. 

In view of this, the present work uses the nonlinear variational 

homogenization method ( Ponte Castañeda, 1991 ) or equivalently 

the modified secant method ( Suquet, 1995 ), which makes use of 

a linear comparison composite (LCC) material, to estimate the ef- 

fective response of a N−phase nonlinear composite material. Even 

though, this method exists for several years most of the studies 

in the context of composite materials have been focused on two- 

phase composites where the optimization process required by the 

method can be done analytically (see for instance deBotton and 

Ponte Castañeda (1993) ). Nevertheless, as the number of phases 
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increases to three or more the optimization can only be done nu- 

merically. Perhaps, that is the reason that in his original work, 

Ponte Castañeda (1992) proposed general expressions (and bounds) 

for N−phase composites, but its numerical/analytical resolution re- 

mained untractable until today due to the complex optimization 

procedures required by the nonlinear homogenization method. 

It should be pointed out at this point that these homogeniza- 

tion theories treat separately the elastic (which in the present 

case is trivial) and the plastic homogenization problem. That of 

course has certain impact if cyclic loading is considered which is 

beyond the scope of the present work and is not considered here. 

Nevertheless, recently, Lahellec and Suquet (2007) proposed an 

incremental variational formulation for materials with a hereditary 

behavior described by two potentials: a free energy and a dissi- 

pation function. This method has been introduced mainly to deal 

with the coupled elasto-plastic response of composites in an at- 

tempt to resolve the cyclic response of these materials (see also re- 

cent work by Brassart et al. (2011) ). Note that these more advanced 

methods use the aforementioned or variants of the LCC estimates. 

In this regard, the present study, albeit not using this coupled 

scheme, reveals the nature of equations required to deal with 

a general N−phase composite material and could be potentially 

useful in the future for such more complete incremental schemes, 

which are based upon those simpler LCC homogenization theories. 

1.1. Scope of the present work and major results 

The scope of the present work is to provide a semi-analytical 

model for N−phase isotropic, incompressible rate-independent 

elasto-plastic materials. Simple analytical expressions are given 

for the effective yield stress of a two-phase composite (see also 

( deBotton and Ponte Castañeda, 1993 )), while a simple semi- 

analytical expression (requiring the solution of a constrained op- 

timization problem for N − 1 scalar quantities) is given for the 

N−phase composite. Additional analytical expressions are also pro- 

vided for the phase concentration tensors and average strains in 

each phase in terms of the aforementioned optimized scalar quan- 

tities. In the context of two- and three-phase materials the model 

is assessed by appropriate three-dimensional multi-particle two- 

and three-phase periodic unit cell calculations considering both 

hardening and non-hardening phases. The agreement is found to 

be good not only for the effective yield stress but also for the 

phase average strains thus allowing for the extension of this model 

to include arbitrary isotropic hardening of the phases. 

Specifically, we use the methodology developed by Ponte Cas- 

tañeda and co-workers ( Ponte Castañeda, 1991; Suquet, 1995 ) to 

derive a model for the rate-independent elastoplastic behavior of 

a macroscopically isotropic composite comprising N phases. When 

the constituent phases are perfectly plastic the corresponding flow 

stress of the composite material ˜ σ0 is determined from the solu- 

tion of a constrained optimization problem: 

˜ σ0 = 

√ √ √ √ √ √ 

inf 
y (i ) ≥0 

y (1) =1 
i =2 ,...,N 

( 
N ∑ 

r=1 

c (r) σ (r) 
0 

2 
y (r) 

) ( 
N ∑ 

p=1 

c (p) 

3 y (p) + 2 y 0 

) ( 
N ∑ 

s =1 

c (s ) y (s ) 

3 y (s ) + 2 y 0 

) −1 

. 

(1) 

where N is the number of phases, (c (i ) , σ (i ) 
0 

) are the volume frac- 

tion and flow stress of phase i , and y ( i ) are positive optimization 

parameters. In turn, y 0 is a reference scalar to be chosen accord- 

ing to various linear homogenization schemes. For instance, best 

results are obtained with the well known Hashin–Shtrikman lower 

bound choice, i.e., y 0 = y (1) = 1 . 

In the special case of a two-phase composite (N = 2) , the op- 

timization problem is solved analytically and the estimate for the 

composite flow stress becomes 

˜ σ0 

σ (1) 
0 

= 

⎧ ⎨ 

⎩ 

5 c (2) r+ c (1) 
√ 

9+6 c (2) −6 c (2) r 2 

3+2 c (2) if 1 ≤ r ≤ 5 

/√ 

4 + 6 c (2) , 

1 

2 

√ 

4 + 6 c (2) if r ≥ 5 

/√ 

4 + 6 c (2) , 

(2) 

where r = σ (2) 
0 

/σ (1) 
0 

is the contrast ratio. The predictions of the 

homogenization model agree well with the predictions of detailed 

three-dimensional unit cell finite element calculations as shown in 

the following. 

The homogenization technique provides also accurate estimates 

for the average strains in the constituent phases. These estimates 

form the basis for the development of an approximate analytical 

model for the elastoplastic behavior of a composite with harden- 

ing phases. A method for the numerical integration of the result- 

ing elastic-plastic equations is developed and the model is imple- 

mented into the ABAQUS general purpose finite element code. The 

predictions of the model agree well with the results of detailed 

unit cell finite element calculations of a composite with hardening 

phases. 

Standard notation is used throughout. Boldface symbols denote 

tensors the orders of which are indicated by the context. The usual 

summation convention is used for repeated Latin indices of ten- 

sor components with respect to a fixed Cartesian coordinate sys- 

tem with base vectors e i (i = 1 , 2 , 3) . The prefice det indicates 

the determinant, a superscript T indicates the transpose, and the 

subscripts s and a the symmetric and anti-symmetric parts of a 

second-order tensor. A superposed dot denotes the material time 

derivative. Let A , B be second-order tensors, and C , D fourth-order 

tensors; the following products are used in the text: (A · B ) i j = 

A ik B k j , A : B = A i j B i j , (A B ) i jkl = A i j B kl , (C : A ) i j = C i jkl A kl , and (C : 

D ) i jkl = C i jpq D pqkl . The inverse C 

−1 of a fourth-order tensor C that 

has the “minor” symmetries C i jkl = C jikl = C i jlk is defined so that 

C : C 

−1 = C 

−1 : C = I , where I is the symmetric fourth-order iden- 

tity tensor with Cartesian components I i jkl = (δik δ jl + δil δ jk ) / 2 , δij 

being the Kronecker delta. 

2. Power-law creep and perfect plasticity 

We consider an incompressible creeping solid characterized by 

a power-law stress potential U of the form 

U ( σe ) = 

σ0 ˙ ε 0 
n + 1 

(
σe 

σ0 

)n +1 

, (3) 

where σ 0 is a reference stress, ˙ ε 0 a reference strain rate, n the 

creep exponent (1 ≤ n ≤ ∞ ), σe = 

√ 

3 
2 s : s the von Mises equiv- 

alent stress, σ the stress tensor, p = σkk / 3 the hydrostatic stress, 

and s = σ − p δ the stress deviator, δ being the second-order iden- 

tity tensor. The corresponding deformation rate D is defined as 

D = 

∂U 

∂ σ
= 

˙ ε̄ N , ˙ ε̄ = ˙ ε 0 

(
σe 

σ0 

)n 

, N = 

∂σe 

∂ σ
= 

3 

2 σe 
s , (4) 

where N is a second order tensor of constant magnitude (N : N = 

3 
2 ) that defines the direction of D and 

˙ ε̄ = 

√ 

2 
3 D : D is the equiva- 

lent plastic strain rate that defines the magnitude of D . Note that 

D kk = 0 . 

The special case in which the exponent takes the value of unity 

( n = 1 ) corresponds to a linearly viscous solid: 

U L (σe ) = 

σ 2 
e 

6 μ
, D = 

∂U L 

∂ σ
= 

s 

2 μ
, (5) 

where μ = σ0 / (3 ˙ ε 0 ) is the viscosity. 

The other limiting case n → ∞ corresponds to a perfectly plas- 

tic solid that obeys the von Mises yield condition with flow stress 



Download English Version:

https://daneshyari.com/en/article/277170

Download Persian Version:

https://daneshyari.com/article/277170

Daneshyari.com

https://daneshyari.com/en/article/277170
https://daneshyari.com/article/277170
https://daneshyari.com

