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a b s t r a c t 

The behavior of rubber layers under pure compression has been investigated to considerable extent in the 

literature. The most widely used approach is the so-called pressure solution , which is based on several as- 

sumptions, most notably that the stress state is dominated by the hydrostatic pressure. Other approaches 

have also been considered, but for nearly incompressible material and thin layers their predictions are 

very similar to those of the pressure solution. Nearly all past studies on the subject have focused on 

rubber layers that are bonded to either rigid or flexible supports (or reinforcement). Unreinforced (i.e., 

single layer) rubber pads are often installed as unbonded, i.e., without steel end plates connecting them 

to their top and bottom supports. In an unbonded application, rubber pads rely solely on friction to de- 

velop shear resistance along the contact interfaces. This shear resistance is necessary to provide the pad 

with an adequately large vertical stiffness. The effect of the frictional restraint along the top and bottom 

contact surfaces and the influence of partial slip have received very little attention in the literature. In 

this paper, we present a theoretical analysis for the behavior of an unbonded rubber layer, including the 

effects of the elastomer’s bulk compressibility and the contact slip at the supports. Results of a finite el- 

ement analysis are also presented and shown to be in good agreement with the results of the theoretical 

analysis. 

© 2016 Elsevier Ltd. All rights reserved. 

1. Introduction 

Rubber bearings are used in a broad range of engineering ap- 

plications, including buildings, bridges, storage tanks, railways, etc. 

Early applications date back to mid-nineteenth century when 50- 

mm thick rubber mats were installed to reduce railway vibra- 

tion on the Britannia and Conwy Bridges in Wales ( Ab-Malek 

and Roberts, 2013 ). Over time, the use of rubber bearings grew 

and extended to various new applications; most notably, they are 

currently used widely to accommodate deformations associated 

with thermal expansion/contraction, traffic loads, and construction 

misalignment in bridges ( Stanton and Roeder, 1982; Constantinou 

et al., 2011 ), to isolate equipment and structures from vibration 

and shock ( Snowdon, 1979 ), and to seismically isolate structures 

( Naeim and Kelly, 1999; Constantinou et al., 2007; Kelly and Kon- 

stantinidis, 2011 ). 

The first attempt to predict the compression stiffness of a rub- 

ber layer bonded to rigid supports was made by Rocard (1937) 

using an energy approach. Further developments were made by 
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Gent and Lindley (1959) who derived expressions for the com- 

pressive stiffness of long-strip and circular elastic layers bonded to 

rigid plates, assuming incompressible material. Gent and Meinecke 

(1970) extended the analysis and presented an expression for 

the compression modulus of a square-shape elastic layer. Lindley 

(1979) applied the energy method to extend the theory for incom- 

pressible material to compressible elastic layers. 

The approach widely used to estimate the compression stiff- 

ness of rubber layers bonded to rigid supports originates from the 

work of Gent and Lindley (1959) and has since come to be known 

as the pressure solution . The pressure solution is based on four 

assumptions (two kinematic and two on the state of stress): (i) 

points on a vertical line before deformation lie on a parabola after 

loading ( parabolic bulging ); (ii) horizontal planes remain horizon- 

tal; (iii) the stress state is assumed to be dominated by the inter- 

nal pressure, p (which gives the solution its name), such that the 

normal stress components are all approximately equal to −p; and 

(iv) the in-plane shear stresses (in the plane parallel to the end 

supports) are negligible ( Kelly and Konstantinidis, 2011 ). Although 

it was first used for incompressible material, it was later extended 

to include bulk compressibility effects. Expressions for the com- 

pression stiffness of rubber layers including compressibility have 

been developed for rubber layers with various geometries: circular 

http://dx.doi.org/10.1016/j.ijsolstr.2016.02.008 

0020-7683/© 2016 Elsevier Ltd. All rights reserved. 

http://dx.doi.org/10.1016/j.ijsolstr.2016.02.008
http://www.ScienceDirect.com
http://www.elsevier.com/locate/ijsolstr
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ijsolstr.2016.02.008&domain=pdf
mailto:konstant@mcmaster.ca
http://dx.doi.org/10.1016/j.ijsolstr.2016.02.008


D. Konstantinidis, S. Rastgoo Moghadam / International Journal of Solids and Structures 87 (2016) 206–221 207 

( Chalhoub and Kelly, 1990 ), annular ( Constantinou et al., 1992 ), 

infinite-strip ( Chalhoub and Kelly, 1991 ), square ( Koh and Kelly, 

1989; Kelly, 1997 ), rectangular ( Koh and Lim, 2001; Kelly and Kon- 

stantinidis, 2011 ). 

Various effort s have been made to remove the assumptions of 

the pressure solution. For instance, Koh and Kelly (1989) used only 

the two kinematic assumptions of the pressure solution (i.e., re- 

moving the normal stress assumption) and a variable transforma- 

tion method to develop solutions for the compression modulus of 

a square layer bonded to rigid supports. The same approach was 

applied by Koh and Lim (2001) to a rectangular layer. Tsai and 

Lee (1998) proposed an approach that eliminated the normal stress 

assumption and used mean pressure, instead, to derive expres- 

sions for infinite-strip, circular and square elastic layers bonded 

to rigid supports. Tsai (2005) applied this approach to a rectan- 

gular layer, developing a single series solution for the compression 

modulus. 

Papoulia and Kelly (1996) followed an approach using the min- 

imum potential energy and Hellinger–Reissner variational princi- 

ples to estimate the compression modulus of nearly incompress- 

ible elastic layers. Pinarbasi et al. (2006) developed an analytical 

solution based on a modified version of the Galerkin method for 

the analysis of infinite-strip elastic layers bonded to rigid supports. 

The order of the theory is based on the number of shape functions 

considered in the displacement expansions. The method was ap- 

plied to circular and annular layers in Pinarbasi et al. (2008) . The 

formulations in these studies are applicable to elastic material with 

a broad range of Poisson’s ratio, but they converge to the pressure 

solution for large values of Poisson’s ratio (or large bulk-to-shear 

modulus ratio), especially for layers with larger shape factor, S (de- 

fined as the ratio of the loaded area to the load-free area that is 

free to bulge) ( Papoulia and Kelly, 1996 ). The pressure solution is 

considered to provide accurate results for rubber layers with, say, 

S > 5 ( Kelly, 1997 ). 

The aforementioned studies developed solutions for the com- 

pression modulus of rubber layers under the assumption that the 

layers are bonded to rigid supports. Osgooei et al. (2014) showed 

that these solutions, developed for single layers, provide accurate 

estimates of the compression stiffness of a multilayer rubber bear- 

ing reinforced with steel shims by treating the layers as springs 

in series. The development of fiber-reinforced laminated rubber 

bearings has prompted various investigations on the compres- 

sive behavior of rubber layers bonded to axially flexible supports, 

representing the fiber reinforcement. To achieve this, Kelly (1999) 

proposed a pressure solution approach whereby the assumed dis- 

placement field is modified to include the stretch of the rein- 

forcement. The approach was used, assuming incompressible ma- 

terial, to develop solutions for infinite-strip-shaped ( Kelly, 1999 ), 

circular-shaped ( Tsai and Kelly, 2001 ), and rectangular-shaped ( Tsai 

and Kelly, 20 01; 20 02 ) layers. The effect of bulk compressibility 

was later included to develop solutions for rubber layers bonded 

to extensible reinforcements for different geometries: infinite strip 

( Kelly, 2002; Kelly and Takhirov, 2002 ), rectangular ( Angeli et al., 

2013; Kelly and Van Engelen, 2015 ), annular ( Pinarbasi and Okay, 

2011 ), and circular ( Kelly and Calabrese, 2013 ). Tsai (2004), (2006) 

relaxed the normal stress assumption of the pressure solution 

to develop solutions for infinite strip and circular elastic layers 

bonded to extensible reinforcement. The compression stiffness of 

a laminated rubber bearing was estimated by taking into account 

the fact that layers in the middle portion of the bearing will extend 

laterally more than those closer to the top and bottom supports 

through the introduction of an assumed parabolic shape. Pinarbasi 

and Mengi (2008) extended the approach presented in Pinarbasi 

et al. (2006) to infinite-strip-shaped elastic layers bonded to ex- 

tensible reinforcement. 

In all these studies, aimed at quantifying the compressive char- 

acteristics of rubber layers, it is assumed that the layers are 

bonded to either rigid or extensible reinforcement. The intent is 

usually to provide the compression modulus of a layer, which can 

then be used to compute the compressive stiffness of a laminated 

steel- or fiber-reinforced rubber bearing. The resulting solutions 

are appropriate for bearings that are bonded to steel end plates, 

as is the case almost always for seismic isolators. However, rubber 

bearings are very commonly used in unbonded applications. Un- 

der unbonded boundary conditions, the friction between the rub- 

ber and the top and bottom supports of the bearing is responsi- 

ble for the development of shear stresses under pure compressive 

load. These surface shear stresses, τ s , increase outwardly towards 

the edges of layer, while the pressure, p , decreases. If the rubber–

support interfaces are characterized by Coulomb friction with co- 

efficient of friction μ, the surface shears are limited to τ s ≤ μp , 

which means that at some point slip must occur. Although fric- 

tion in rubber is relatively high, smooth support surfaces or the 

introduction of some level of lubrication, either intentionally or 

accidentally, can reduce the frictional restraint along the support–

rubber interfaces, resulting in slip and a reduction in the compres- 

sion modulus. Kelly and Konstantinidis (2009) investigated the ef- 

fect of slip on the compression properties of a single rubber layer 

restrained by friction along its top and bottom supports, as well 

as on a rubber layer bonded to a rigid support on one end (rep- 

resenting a steel shim) but restrained by friction on the other. 

The study focused on infinite-strip-shaped layers of incompressible 

rubber and concluded that slip can significantly reduce the com- 

pression modulus of the layer. This conclusion has been confirmed 

by Rastgoo Moghadam and Konstantinidis (2014) using finite ele- 

ment analysis . For unbonded multilayer rubber bearings, especially 

with only a few layers, this can in turn result in an appreciable 

reduction in the overall vertical stiffness of the bearing. 

Various analytical and experimental studies ( Gent and Lindley, 

1959; Koh and Kelly, 1989; Kelly and Konstantinidis, 2011 ) have 

pointed out that consideration of the bulk compressibility of the 

elastomer in the compression analysis of rubber layers can have a 

significant effect on the pressure distribution, the maximum shear 

strain that is developed by the constraint of the rigid supports 

on the top and bottom of the bonded rubber layer, and the com- 

pression modulus, especially for bearings with large shape factor 

( Kelly and Konstantinidis, 2011; Van Engelen et al., 2016 ). This 

paper presents a theoretical analysis of the compression behav- 

ior of strip and circular rubber layers taking into account bulk 

compressibility and contact slip at the supports. Fig. 1 shows a 

photograph of a typical thin rubber pad. The analysis presented 

herein is for a single-layer pad restrained by Coulomb friction at 

the top and bottom supports, while the compressive behavior of 

a friction-restrained multilayer bearing with compressible material 

will be investigated in a future study. Although the description of 

Fig. 1. Unbonded rubber pad. 
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