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a b s t r a c t 

In this paper a spring-like micromechanical contact model is proposed, aiming to describe the mechan- 

ical behavior of two rough surfaces in no-sliding contact under a closure pressure. The contact region 

between two elastic bodies is described as a thin damaged interphase characterized by the occurrence 

of non-interacting penny-shaped cracks ( internal cracks). By combining a homogenization approach and 

an asymptotic technique, tangential and normal equivalent contact stiffnesses are consistently derived. 

An analytical description of evolving contact and no-contact areas with respect to the closure pressure 

is also provided, resulting consistent with theoretical Hertz-based asymptotic predictions and in good 

agreement with available numerical estimates. Proposed model has been successfully validated through 

comparisons with some theoretical and experimental results available in literature, as well as with other 

well-established modeling approaches. Finally, the influence of main model parameters is addressed, 

proving also the model capability to catch the experimentally-observed dependence of the tangent-to- 

normal contact stiffness ratio on the closure pressure. 

© 2016 Elsevier Ltd. All rights reserved. 

1. Introduction 

Analytical and numerical modeling of contact problems related 

to rough surfaces can be surely considered as an open and chal- 

lenging research topic, strictly associated to many applications in 

different engineering fields. From a computational point of view, it 

is possible to identify a class of modeling problems in which it is 

neither possible nor convenient to account for a fine and detailed 

description of the contact regions, although local contact features 

may strongly affect the overall mechanical response for the prob- 

lem under investigation. In these cases, a possible strategy is based 

on modeling contact scenarios by introducing suitable stiffness and 

dashpot distributions at the contact nominal interface, allowing to 

upscale at the macroscale the influence of dominant contact mech- 

anisms occurring at the roughness scale. In this context and as re- 

viewed by Baltazar et al. (2002) , starting from fundamental results 

of classic contact theories and accounting for main microgeometric 

features at the contact interface, several theoretical and numerical 
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models have been proposed in the specialized literature (namely, 

spring-like models), aiming to consistently derive some equivalent 

stiffnesses. 

One of the earliest contact model for elastic rough surfaces 

was proposed by Greenwood and Williamson (1966) . This model is 

based on the Hertz contact solution for curved elastic nominally- 

flat surfaces ( Mindlin, 1949 ) and it accounts for a statistical dis- 

tribution of non-interacting asperities. Moreover, Yoshioka and 

Scholz (1989) proposed an elastic contact model via a statis- 

tical approach that allows to describe possible oblique contact 

conditions among asperities. By combining the Hertz–Mindlin the- 

ory ( Mindlin, 1949 ) and the previously-introduced Greenwood- 

Williamson contact model, Sherif and Kossa (1991) and Krolikowski 

and Szczepek (1993) provided an analytical description of normal 

and tangential contact stiffnesses, in order to establish a theoret- 

ical interpretation for the experimental results they obtained. In 

this case, the contact between two nominally-flat rough surfaces is 

modeled as the contact between two elastic surfaces, one of which 

is ideally flat and the other is nominally flat but covered with 

many spherically-shaped asperities. A generalization of such an ap- 

proach was developed by Baltazar et al. (2002) , accounting also for 

a possible contact misalignment. Nevertheless, a possible common 

drawback of all the aforementioned contact models is that they are 

generally based on a stochastic approach. Accordingly, in order to 
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make them practically applicable, the identification of a number of 

statistic parameters, often not easily estimable ( McCool, 1986 ), is 

required. 

A crucial aspect in deriving reliable contact solutions is related 

to the description of the contact area and its evolution with re- 

spect to the closure pressure ( Johnson, 1987 ). Starting from the 

analytical solution of Westergaard (1939) , Johnson et al. (1985) de- 

veloped a model for the elastic contact between a two-dimensional 

wavy surface and a rigid flat plane, proposing an analytic descrip- 

tion of the contact area in the asymptotic limit cases of early 

contact (namely, for small values of the closure pressure) and of 

nearly-full contact conditions (high values of the closure pressure). 

More recently, Yastrebov et al. (2014) proposed a refined numer- 

ical approach consisting in a FFT-based boundary-element formu- 

lation, and they obtained an accurate numerical description of the 

contact-area evolution with the closure pressure in the case of the 

elastic contact between a wavy surface and a flat plane. 

Several experimental studies can be found in the literature ad- 

dressing the mechanical behavior of rough surfaces in no-sliding 

contact under closure-pressure conditions (e.g., Krolikowski et al., 

1989; Sherif and Kossa, 1991; Krolikowski and Szczepek, 1993; 

Baltazar et al., 2002; Dwyer-Joyce and Gonzalez-Valadez, 2003; 

Gonzalez-Valadez et al., 2010 ), providing also estimates for nor- 

mal and tangential contact stiffnesses. For instance, Krolikowski 

and coworkers ( Krolikowski and Szczepek, 1993; Krolikowski et al., 

1989 ) proposed contact-stiffness measures through an ultrasonic 

method, based on the measurement of the reflection coefficient of 

ultrasonic waves at the contact interface. Sherif and Kossa (1991) 

employed an experimental technique based on the evaluation of 

the local natural frequencies at the contact region. Gonzalez- 

Valadez et al. (2010) proposed results based on ultrasonic tests and 

accounting also for loading-unloading cycles of the closure pres- 

sure. As a matter of fact, experimental results confirm that: high 

stress concentrations appear at the contact region, and they result 

practically unaffected by the shape of bodies in contact at a suit- 

able distance from the contact area ( Johnson, 1987; Johnson et al., 

1985 ); hysteresis phenomena occur at the interface (as a result of 

the plastic deformation localized at the asperity tips) in the case 

of cycling loads ( Gonzalez-Valadez et al., 2010 ); null values of in- 

terface stiffnesses are achieved when the closure pressure tends to 

zero ( Gonzalez-Valadez et al., 2010 ). 

In this paper a novel spring-like theoretical model for no- 

sliding contact under a closure pressure is proposed. Incremen- 

tal normal and tangential equivalent stiffnesses at the nominal 

contact interface are derived, by assuming contact microgeom- 

etry be described by isolated internal cracks ( Sevostianov and 

Kachanov, 20 08a; 20 08b ) occurring in a thin interphase region. 

In detail, effective mechanical properties at the contact zone are 

consistently derived following the imperfect interface approach re- 

cently adopted by Lebon and coworkers ( Fouchal et al., 2014; Rekik 

and Lebon, 2010; 2012 ), by coupling a homogenization approach 

for microcracked media based on the non-interacting approxima- 

tion ( Kachanov, 1994; Kachanov and Sevostianov, 2005; Sevos- 

tianov and Kachanov, 2013; Tsukrov and Kachanov, 20 0 0 ) and the 

matched asymptotic expansion method, introduced by Sanchez- 

Palencia (1987) and Sanchez-Palencia and Sanchez-Hubert (1992) 

and recently employed by Lebon and Rizzoni (2011) , Rizzoni and 

Lebon (2013) , Rizzoni et al. (2014) and Lebon and Zaittouni (2010) . 

The proposed model is detailed in Section 2 , and its validation 

is provided by comparing numerical results with available theoret- 

ical and experimental findings ( Section 3.1 ). Model effectiveness is 

also proved for a wide range of closure-pressure values by compar- 

ing proposed results with those obtained via the contact model in- 

troduced by Sherif and Kossa (1991) ( Section 3.2 ). Afterwards, the 

influence of main model parameters is investigated in Section 3.3 , 

and finally some conclusions are traced in Section 4 . 

2. Contact model 

2.1. General framework 

Let the contact problem C be introduced by considering two 

continuous bodies �1 and �2 , comprising linearly-elastic isotropic 

materials ( E i and ν i , with i = 1 , 2 , being Young modulus and Pois- 

son ratio, respectively), in no-sliding contact via non-conforming 

rough surfaces under a closure pressure condition ( Fig. 1 ). Let 

S ⊂ R 

2 be the nominal contact interface, belonging to the interface 

plane π . Let a Cartesian frame ( O , e 1 , e 2 , e 3 ) be introduced, with 

x 1 , x 2 and x 3 the corresponding coordinates. The origin O belongs 

to π , and e 3 is orthogonal to π and directed outward from �2 . 

Normal and tangential incremental contact stiffnesses ( K 

C 
N and 

K 

C 
T , respectively) per unit nominal contact area in S are defined 

as: 

K 

C 
N = 

d F N 

d w 

, K 

C 
T = 

d F T 

d s 
(1) 

where d w and d s are the increments of the relative displacements 

at the contact interface region in normal (i.e., along e 3 ) and tan- 

gential (i.e., parallel to π ) directions, and d F N and d F T are the in- 

crements of the normal and tangential forces transmitted through 

the unit contact area, respectively. Contact microgeometry is as- 

sumed to be isotropic in S and thereby the tangential contact stiff- 

ness K 

C 
T 

can be postulated as independent from the tangential di- 

rection. 

In agreement with the approach adopted by Westergaard (1939) 

and by Johnson et al. (1985) , contact microgeometry is modeled 

by describing no-contact regions as parallel penny-shaped inter- 

nal cracks ( Sevostianov and Kachanov, 20 08a; 20 08b ) lying on the 

interface plane π . Coplanar mechanical interactions among cracks 

are considered negligible, resulting in the non-interacting approxi- 

mation ( Kachanov, 1994; Sevostianov and Kachanov, 2013 ). Accord- 

ingly, the region close to the nominal contact interface S is re- 

garded as an imperfect interphase B 

ε , defined as the thin layer 

having S as the middle section and ε as the uniform small thick- 

ness, and weakened by identical and parallel penny-shaped cracks 

of radius b ( Fig. 1 ). 

Referring to a simplistic idealization of the contacting rough 

surfaces via bi-sinusoidal wavy-like smooth surfaces, both of them 

with wavelength λ and amplitude � (such that � � λ), a ε-thick 

representative elementary volume (REV) at the contact interface, 

and occupying the region ��ε ⊂ B 

ε , can be conveniently intro- 

duced as sketched in Fig. 1 . 

Accordingly, the contact problem C is faced by introducing an 

auxiliary model problem A , defined on the microcracked inter- 

phase B 

ε and described via the REV. 

2.2. Imperfect interface approach 

Referring to the auxiliary model problem A , and as a nota- 

tion rule, the following symbols will be adopted: �ε + = �1 \ B 

ε 

and �ε − = �2 \ B 

ε , with �ε ± also referred to as adherents; S ε ± = 

�ε ± ∩ B 

ε identifying the plane interfaces parallel to π between in- 

terphase and adherents. It is assumed that �ε ± and B 

ε are perfectly 

bonded, so that displacement and stress vector fields are ensured 

to be continuous across S ε ±. 

2.2.1. Homogenization of the microcracked interphase 

Let � ⊂ S be the crack middle surface for a penny-shaped 

crack in B 

ε , and let u 

+ and u 

− be the displacement vectors 

at the parallel-to- S crack boundaries. Denote also with u cod = ∫ 
�( u 

+ − u 

−)d�/ | �| the average measure of the displacement jump 

across the crack, in the following referred to as the crack open- 

ing displacement vector. In agreement with a well-established 
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