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a b s t r a c t 

The main goal of this study is to propose a practical application of a new family of transverse anisotropic 

invariants by designing a strain energy function (SEF) for incompressible fiber-reinforced materials. In or- 

der to validate the usability and creativeness of the proposed model, two different fiber-reinforced rubber 

materials under uniaxial and shear testing are considered. For each kind of material, numerical simula- 

tions based on the proposed model are consistent with experimental results and provide information 

about the effect of the new family of invariants in the construction of the SEF. 

© 2016 Elsevier Ltd. All rights reserved. 

1. Introduction 

These past twenty years, many strain energy functions have 

been proposed for transversely isotropic materials to investigate 

the mechanical behavior of biological soft tissues. Usually, these 

materials are considered as anisotropic due to the collagen fiber 

behavior Gasser et al. (2006) . The number of fiber families is set 

to 1 to model tissues such as ligament or tendons while it is set to 

2 to represent the arterial wall Peyraut et al. (2010) . Several con- 

stitutive finite element models were built for biological soft tis- 

sues, such as ligament and tendons Almeida and Spilker (1998) ; 

Weiss et al. (1996) . Based on the neo-Hookean model, biomechan- 

ical behavior of the arterial wall and its numerical characterization 

are analyzed and discussed in Holzapfel and Weizsäcker (1998) . 

Holzapfel et al. (20 0 0) introduced structural SEFs for describing 

the soft biological tissues such as the arterial wall. Based on this 

model, Zulliger et al. (2004) proposed a SEF for arteries that ac- 

count for the wall composition and structure. 
In general, it is assumed that the mechanical behavior of the 

material is not affected if the fibers are in a compressive state 

Holzapfel et al. (2004) ; Merodio and Ogden (2003) . Taking ad- 

vantage of this situation, most of the papers published in the lit- 

erature propose to separate the energy density into an isotropic 

part and an anisotropic part. The first part accounts for the low 

strain behavior of the ground matrix and the second part captures 
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the behavior of the fibers at higher strain Balzani et al. (2006) ; 

Weiss et al. (1996) . More recently, an original approach mixing 

the isotropic and the anisotropic parts in a single SEF was intro- 

duced by Ta et al. (2014 , 2013 ). This approach was inspired by the 

pioneer work of Thionnet and Martin (2006) and is mathemati- 

cally justified by the theory of invariant polynomials. It provides 

an alternative to the classical method found in the literature for 

building invariants and allows to exhibit an integrity basis made 

of six invariants, some of them being original, in the case of a 

one-fiber family material. In the same spirit, some complementary 

results are demonstrated in this paper: (i) one of the six invari- 

ants exhibited in Ta et al. (2014) can be excluded from the in- 

tegrity basis by adding the appropriate transformation in the mate- 

rial symmetry group; (ii) three of the six invariants are well known 

polyconvex functions; (iii) the last two invariants are original, 

physically motivated and directly connected to shear effects. Ad- 

ditionally, these two invariants shed a light on the classical mixed 

invariant J 5 = T r( C 2 M ) and allows to link it with shear strain while 

it is often reported in the literature the difficulty to provide a 

physically-based motivation for J 5 . However, up to now and to the 

best of our knowledge, the mathematical foundations introduced 

in Ta et al. (2014) have not met a practical extension. The new 

strain energy function proposed in this paper by using the integrity 

basis made of the six invariants exhibited in Ta et al. (2014) consti- 

tutes a first attempt in this direction. To assess the appropriateness 

of this new density, numerical simulations are compared with ex- 

perimental results extracted from the paper published by Ciarletta 

et al. (2011) . For our purpose the interest of the work of Ciarletta 

et al. is threefold: 
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Fig. 1. A fiber-reinforced material with one fiber family. 

• It provides a large variety of experimental results by testing 

two different materials, each in four different situations (tensile 

and simple shear loadings parallel and transverse to the rubber- 

reinforcement direction), covering a large scope of the material 

behavior. It therefore constitutes a good trial for the assessment 

of models because a single set of material parameters should 

have to match all the four experimental tests. 

• If tensile tests prevail in the literature, shear tests are uncom- 

mon although they can be considered as a severe benchmark 

case for rubber material models. As outlined by Horgan and 

Murphy (2010) : ”The classical problem of simple shear in nonlin- 

ear elasticity has played an important role as a basic pilot problem 

involving a homogeneous deformation that is rich enough to illus- 

trate several key features of the nonlinear theory, most notably the 

presence of normal stress effects. ( ���) Since shearing is one of the 

dominant modes of behavior of rubbers in applications, this raises 

major concerns. Put another way, simple shear is not so simple 

after all ”. 

• A new hyperelastic model using a non classical measure of 

strain is also proposed in Ciarletta et al. (2011) . In the same 

vein, Fereidoonnezhad et al. (2013) have built later a model us- 

ing this kind of strain, reporting the non linearity aspect from 

the form of the SEF to the strain invariant, and have used the 

experimental data provided by Ciarletta et al. to assess their 

model. Our new model can therefore be compared not only 

with experimental results but also with numerical simulations. 

As mentioned before, the model proposed in this paper involves 

a combination of the six new invariants determined by Ta et al. 

(2014) . This choice is motivated by the fact that these invariants 

do not require a separation of the SEF into an isotropic and an 

anisotropic part. Another motivation is the rigorous mathematical 

foundations used by Ta et al . to define those invariants. In the same 

spirit as the Mooney–Rivlin models in the framework of isotropic 

hyperelasticity Mooney (1940) ; Rivlin (1948) , we have introduced 

an original SEF as a polynomial function of these new invariants. 

The conclusions are as follows: 

• A linear or a quadratic expansion of the invariants is not suffi- 

cient to well describe the material behavior with the four ex- 

perimental set-up considered, particularly with the shear test. 

In fact we prove that any polynomial SEF in the invariants will 

not be suitable to fit the experimental data. 

• A quadratic expansion of the invariants combined with an ap- 

propriate power-law form provides accurate predictions of all 

the experimental results. 

• The three invariants K 1 , K 3 and K 6 play a distinguished role to 

model shear effect. 

Notations 

A bold-face Latin lowercase letter, say a , and a bold-face Latin 

capital letter, say A , will denote a vector and second-order tensor, 

respectively. The standard Euclidean scalar product is symbolized 

by a double bracket 

〈 Ca , a 〉 = 

3 ∑ 

i =1 

C i j a j a i 

and the related Euclidean norm is noted ‖ . ‖ : 
‖ 

u ‖ 

= 〈 u , u 〉 1 2 

The tensor product between two vectors a and b is defined by 

(a ⊗ b) i j = a i b j 

2. Preliminaries 

In this paper we focus on a fiber-reinforced material with one 

fiber family of direction a as depicted on Fig. 1 . We assume that a 

lies in the plane ( E 1 , E 2 ) and forms an angle θ with E 1 

a = 

( 

c 
s 
0 

) 

, b = 

( −s 
c 
0 

) 

with c = cos (θ ) , s = sin (θ ) (1) 

Practically, we will only consider the following two cases where 

the fibers are parallel (θ = 0) or transverse (θ = 

π
2 ) to E 1 

Parallel: a = 

( 

1 

0 

0 

) 

, b = 

( 

0 

1 

0 

) 

, c = 

( 

0 

0 

1 

) 

;

Transverse: a = 

( 

0 

1 

0 

) 

, b = 

( −1 

0 

0 

) 

, c = 

( 

0 

0 

1 

) 

(2) 

The group of all orthogonal transformations of R 

3 is denoted 

by Q 

3 = { Q ∈ M 3 ×3 (R ) , Q Q 

T = Q 

T Q = I } , where I is the identity 

matrix and M 3 ×3 (R ) the set of 3 × 3 real matrices. We denote 

by G the material symmetry group containing all the orthogonal 

transformations of Q 

3 leaving invariant the material structure. This 

group G can be described as the group of all rotations around the 

fiber direction a . Using a mathematical argument based on an ex- 

tension of the Reynolds operator, in order to account for the infi- 

nite cardinality of G, Ta et al. (2014) have demonstrated that the 

following six invariant polynomials form an integrity basis of the 

ring of invariant polynomials under the action of G

K 1 = ρ1 ; K 2 = ρ2 + ρ3 ; K 3 = ρ2 
5 + ρ2 

4 ; K 4 = ρ2 
6 − ρ2 ρ3 

K 5 = (ρ2 
5 − ρ2 

4 ) ρ6 + ρ4 ρ5 (ρ2 − ρ3 ) ; K 6 = (ρ2 
4 − ρ2 

5 )(ρ2 − ρ3 ) 

+ 4 ρ4 ρ5 ρ6 (3) 

where the ρ i stand for 

ρ1 = 〈 Ca , a 〉; ρ2 = 〈 Cb , b 〉; ρ3 = 〈 Cc , c 〉 
ρ4 = 〈 Ca , b 〉; ρ5 = 〈 Ca , c 〉; ρ6 = 〈 Cb , c 〉 (4) 
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