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a b s t r a c t 

The well-known yield-line analysis procedure for slabs has recently been systematically automated, en- 

abling the critical yield-line pattern to be identified quickly and easily, whatever the slab geometry. This 

has been achieved by using the discontinuity layout optimization (DLO) procedure, which involves using 

optimization to identify the critical layout of yield-line discontinuities interconnecting regularly spaced 

nodes distributed across a slab. However, whilst highly accurate solutions can be obtained, the corre- 

sponding yield-line patterns are often quite complex in form, especially when relatively dense nodal grids 

are employed. Here a method of rationalizing the DLO-derived yield-line patterns via a geometry opti- 

mization post-processing step is described. Geometry optimization involves adjusting the positions of the 

nodes, thereby simultaneously simplifying and improving the accuracy of the solution. The mathematical 

expressions involved are derived analytically, and various practical issues are highlighted and addressed. 

Finally, an interior point optimizer is used to obtain rationalized solutions for a variety of sample slab 

analysis problems, clearly demonstrating the efficacy of the proposed rationalization technique. 

© 2015 Elsevier Ltd. All rights reserved. 

1. Introduction 

The yield-line method of analysis proposed by Johansen (1943) 

provides a powerful means of computing the collapse load of 

a reinforced concrete slab. The method, which provides upper 

bound solutions within the context of the formal theorems of 

plasticity, requires a kinematically admissible failure mechanism 

to be prescribed, defined by means of a yield-line pattern. The 

early focus was on slabs with relatively simple geometries (e.g., 

Johansen, 1943, 1968 ) because, at the time, systematic means of 

identifying the critical failure mechanism for irregularly shaped 

slabs were not available. Subsequently Chan (1972) and Munro and 

Da Fonseca (1978) proposed a means of automatically identifying 

the critical yield-line pattern. This involved discretizing a slab 

using rigid finite-elements, with the critical yield-line pattern then 

obtained automatically via linear optimization. However, because 

yield-lines were restricted to forming only at the edges of the 

finite-elements, the resulting yield-line patterns were significantly 

influenced by the initial mesh topology. Attempting to address this 

issue, various workers proposed the use of ‘geometry optimization’ 

to subsequently adjust the positions of selected nodes in a post- 

processing phase. For example, Johnson (1994, 1995) proposed 

that this be achieved via the use of sequential linear programming. 
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Other workers to propose a similar approach included Thavalingam 

et al. (1999) , who employed a conjugate gradient optimizer, and 

Ramsay and Johnson (1997, 1998 ), who used a direct search solver. 

However, as indicated by Ramsay et al. (2015) , the outcomes 

will be affected by the initial mesh topology, and a poor initial 

solution will render any subsequent geometry optimization phase 

largely ineffective. Another issue is the need to manually identify 

yield-lines from the finite-element meshes; any misinterpretation 

can reduce the efficacy of the geometry optimization phase. 

This has been described as being ‘difficult’ (e.g., Johnson, 1994, 

Thavalingam et al., 1999 ). As an alternative, plate formulations in 

which deformations can take place within elements, rather than 

just at element boundaries, have been proposed, with pioneering 

work in this field undertaken by Hodge and Belytschko (1968) and 

Anderheggen and Knöpfel (1972) . However, with such formulations 

the yield-line pattern can be somewhat difficult to discern. 

More recently, Jackson (2010) and Jackson and Middleton (2013) 

used a lower-bound finite element solution to derive ‘yield-line 

indicators’, which could be used to infer the likely general form 

of a critical yield line pattern. This then enabled a more refined 

yield-line pattern to be identified via a geometry optimization step. 

The resulting procedure allowed reasonable yield-line analysis so- 

lutions to be obtained for complex slab problems. However, as the 

procedure involved a manual interpretation step, a truly system- 

atic means of automatically identifying the critical yield-line pat- 

tern remained to be found. 
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Fig. 1. Steps in the DLO procedure: (a) define slab geometry and properties; (b) discretize slab using nodes; (c) interconnect nodes with potential yield-lines; (d) use 

optimization to identify optimal subset of yield-lines, and resulting yield-line pattern . 

Recently, this goal was achieved by Gilbert et al. (2014) , who 

used discontinuity layout optimization (DLO) to automate the pro- 

cess of identifying the most critical yield-line pattern. Instead of 

discretizing the problem using elements arranged in a finite ele- 

ment mesh, when using DLO the slab area is populated by nodes, 

and these are then interconnected with a large set of potential 

yield-lines, which are free to cross-over one another. A highly effi- 

cient optimization process is then used to find the critical subset of 

yield-lines involved in the critical failure mechanism. An overview 

of the steps involved in the DLO procedure is shown in Fig. 1 . Im- 

proved solutions can be obtained by using an increased number of 

nodes; the resulting increased number of potential yield-lines can 

be handled efficiently using the adaptive solution scheme proposed 

for truss layout optimization by Gilbert and Tyas, 2003 , and used 

for this application in Gilbert et al., 2014 . However, whilst highly 

accurate solutions can be obtained using the DLO procedure, the 

corresponding yield-line patterns are often quite complex in form, 

especially when relatively dense nodal grids are employed. In an 

attempt to address this, a modified formulation was also proposed 

by Gilbert et al. (2014) . The modified formulation involved penaliz- 

ing short yield-lines, leading to solutions that were generally sim- 

pler in form than the original. However, these solutions were also 

less accurate (i.e. the gap between the exact and numerical solu- 

tion was increased). In the present paper a geometry optimization 

step will instead be used to rationalize the yield-line patterns, with 

a view to simultaneously simplifying the yield-line patterns and 

improving the solutions (i.e. so that the gap between the exact and 

numerical solution reduces). 

The proposed procedure clearly has similarities with the pro- 

cedure put forward by Johnson (1994 , 1995 ), which also involved 

the use of a geometry optimization step. However, in the proposed 

procedure the rationalization process starts from a yield-line pat- 

tern obtained using DLO, which is a much better starting point 

than a yield-line pattern derived from a rigid finite element analy- 

sis. Also, here the relevant geometry optimization formulae will be 

derived analytically, thus permitting a wider variety of optimiza- 

tion methods to be applied. These distinguishing features can be 

expected to ensure that performance is much improved. Note also 

that the proposed procedure is similar to the procedure recently 

proposed for rationalizing trusses identified using layout optimiza- 

tion ( He and Gilbert, 2015 ); also the use of a geometry optimiza- 

tion step to improve very coarse resolution DLO solutions has re- 

cently been proposed for in-plane analysis problems by Bauer and 

Lackner (2015) . 

The paper is organized as follows: (i) the new DLO-based au- 

tomated yield-line analysis procedure is first introduced; (ii) the 

geometry optimization problem is defined and relevant mathemat- 

ical expressions are given; (iii) implementation issues are consid- 

ered and addressed; (iv) various numerical examples are used to 

demonstrate the efficacy of the procedure; (v) conclusions from 

the study are presented. 

2. Automated yield-line analysis using DLO 

2.1. Overall problem formulation 

The kinematic DLO limit analysis formulation for a weightless 

slab can be written as an optimization problem as follows (after 

Gilbert et al., 2014 ): 

min 

d,p 
λf T L d = g 

T p (1a) 

s.t. Bd = 0 (1b) 

Np − d = 0 (1c) 

f T L d = 1 (1d) 

p ≥ 0 , (1e) 

where the objective is to minimize the internal work done along 

yield-lines (1a) , subject to compatibility at nodes (1b) , plastic flow 

requirements (1c) , a unit displacement constraint, defined accord- 

ing to the principle of virtual work, (1d) , and a constraint that en- 

sures that the internal work done must be positive (1e) . And where 

λ is a dimensionless load factor, and p and g are vectors contain- 

ing plastic multipliers and their corresponding work equation co- 

efficients. Also B is a suitable compatibility matrix containing di- 

rection cosines for the yield-lines, and d contains relative displace- 

ments along yield-lines, as shown in Fig. 2 (where θn , θ t , and δ
are respectively the normal rotation, twisting rotation, and out-of- 

plane displacement, along a yield-line or at the edge of a slab). 

Also, N is a suitable plastic flow matrix and f L is a vector that pre- 

scribes the effect of live loads ‘above’ each yield-line. 

The optimization variables are the yield-line displacements in 

d and plastic multipliers in p . Since all terms are linear, the opti- 

mization formulation (1) can be solved using linear programming 

(LP). The entire optimization problem can be assembled using lo- 

cally derived formulae for each yield-line, which are introduced in 

the following section. 

2.2. Terms for a single yield-line 

For a yield-line i that connects two nodes A( x A , y A ) and B( x B , 

y B ), and inclined at an angle φ to x axis, as shown in Fig. 3 , let x l = 

x B − x A and y l = y B − y A . (Note that in the interests of conciseness, 

the subscript i has been omitted, i.e. x l is used rather than x li ; this 

is repeated for all coefficients defined in this section). The length 

of this yield-line is calculated using l = 

√ 

x 2 
l 
+ y 2 

l 
, so cos φ = x l /l. Now 

assume that the displacement variables in d for this yield-line are 

of the form [ θn , θ t , δ] T . The contribution to the nodal compatibility 

constraint (1b) for this yield line is given by: 
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