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a b s t r a c t 

Zeroth-order bounds of elastic properties have been discussed by Kröner (1977) and by Nadeau and Fer- 

rari (2001). These bounds enclose the effective linear elastic properties of multiphase materials consti- 

tuted of materials with arbitrary symmetry and of an arbitrary number of phases by using solely the ma- 

terial constants of the single materials. Nadeau and Ferrari showed that these bounds are isotropic tensors 

and presented an algorithm for the determination of the upper and the lower zeroth-order bound. It is 

shown in this paper that a problem arises for the lower bound, since the algorithm presented in Nadeau 

and Ferrari (2001), results in a negative compression modulus and/or shear modulus although the con- 

sidered stiffness is positive definite. A simple analytic example for this undesirable property is given, to- 

gether with a short Mathematica ® code of the algorithm. In the present work, the definition of the lower 

bound by Nadeau and Ferrari is modified, thereby assuring its positive definiteness. The Mathematica ®

code of the corrected algorithm is also given. Furthermore, new bounds for non-diagonal components are 

derived, which give information of, in principle, accessible values for non-diagonal stiffness components 

using the zeroth-order bounds of the present work. The practical application of zeroth-order bounds for 

local and online material data bases of stiffness tensors is presented, in order to accelerate purposes in 

materials design through efficient materials screening. 

© 2015 Elsevier Ltd. All rights reserved. 

1. Introduction 

Multiphase materials (e.g., fiber reinforced polymers, particle 

reinforced materials, metal matrix composites, etc.) offer a rich 

pool of design options, see, e.g., Torquato (2002) , Kainer (2006) , 

Ashby (2010) and Adams et al. (2013) . In the field of materi- 

als research, the development of accurate models predicting the 

anisotropic multi-physical material response of multiphase mate- 

rials has been driven on in many ways. Novel experimental tech- 

niques allow a more precise extraction of relevant microstructure 

information, and new homogenization techniques allow the de- 

scription and more reliable computation of effective properties. For 

homogenization approaches based on statistical first-, second-, and 

higher-order techniques, see, e.g., Eshelby (1957) , Kröner (1977) , 

Willis (1977) , Torquato (2002) , Adams et al. (2013) and Bacca et al. 

(2013a , 2013b) . However, in order to exploit the maximum design 

potential of multiphase materials, inverse design methodologies, 

e.g., Ashby (2010) , Adams et al. (2013) , or Lobos and Böhlke (2015) , 

are needed. This methodologies provide different strategies in the 
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areas of, e.g., the screening of material data bases for attractive 

material candidates and combinations as well as the description of 

influence microstructure variation and its limitations (referred to 

as “properties closure” in Adams et al. (2013) ) and, finally, for com- 

puting the best possible microstructure influence delivering prop- 

erties as close as possible to the desired ones. This is significantly 

more powerful and structured than empirical techniques relying 

on experimental measurements and interpolation of the measured 

data since an infinite number of microstructures with possibly bet- 

ter properties will never be tested. 

One small, however, important step in inverse design method- 

ologies is the screening for materials which, in principle, inhibit 

the potential to offer the prescribed properties. This is not only 

crucial from a design point of view but is, as well, important in- 

formation which can be easily included in local and online mate- 

rial data bases, e.g., https://www.materialsproject.org/ , see e.g., Jain 

et al. (2013) , de Jong et al. (2015) and Cheng et al. (2015) . The prin- 

cipal limits of the anisotropic linear elastic material behavior of 

a multiphase material are described by their zeroth-order bounds. 

Unlike first- and second-order bounds of tensorial material proper- 

ties, which need, respectively, one- and two-point statistical infor- 

mation of the microstructure, the zeroth-order bounds can be cal- 

culated without any statistical information. They require solely the 
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material constants of the constituents of the multiphase material. 

This information is sufficient in order to energetically enclose the 

effective material behavior of all realizations of the multiphase ma- 

terial, from above and from below, independently of the complex- 

ity and diversity of the real microstructure. This property makes 

the zeroth-order bounds perfect design descriptors for the physi- 

cally motivated material screening. Naturally, further non-physical 

characteristics are important for the industrial design, as exten- 

sively discussed in Ashby (2010) . 

In the present work, the algorithm presented in Nadeau and 

Ferrari (2001) is reviewed and corrected, since the algorithm de- 

livers indefinite tensors for specific positive definite stiffness ten- 

sors. A simple analytic example for this undesirable property is 

presented. The problem is solved by defining the lower bound 

through the dual operator and its upper bound. This ensures the 

positive definiteness of all zeroth-order bounds. Further, an alter- 

native scalar anisotropy descriptor, which is invariant by consider- 

ation of the inverse tensors, is introduced, reflecting the anisotropy 

of a single anisotropic or a multiphase material. Further, in the 

present work, novel optimal bounds of the effective stiffness com- 

ponents are derived. The results are then applied to an exemplary 

material data base in order to illustrate the practical use. 

In Section 2 , the zeroth-order bounds and the algorithm of 

Nadeau and Ferrari are recapitulated. Then in Section 3 , the cor- 

rected formulation is presented, together with the application on 

an exemplary data base. Conclusions are discussed in Section 4 . 

The derivation of the optimal bounds for non-diagonal components 

is sketched in Appendix A . A simple example and a Mathematica ®

code of the algorithms are given in Appendix B and Appendix C , 

respectively. 

Notation: A direct tensor notation is preferred throughout the 

text. Scalars are denoted by light-face type characters, e.g., a , b , 

α, β , W . First-order tensors are denoted by bold-face type lower 

case Latin characters, e.g., x , y . Second-order tensors are denoted 

by bold upper case Latin characters and Greek characters, e.g., 

A , σ, ε . Fourth-order tensors are denote by blackboard bold up- 

per case Latin characters, e.g., C , S . The Kronecker symbol is de- 

noted by δij . The scalar product between first- and second-order 

tensors is denoted as a · b and A · B , respectively. Ortho-normal ba- 

sis vectors e i , i.e., e i · e j = δi j , are used to describe all tensors. The 

tensor product is denoted by ⊗. The components of any tensor in 

respect to its ortho-normal basis are denoted by a i , A ij , C ijkl , re- 

spectively for first-, second- and fourth-order tensors with the cor- 

responding bases { e i } , { e i ⊗ e j } and { e i ⊗ e j ⊗ e k ⊗ e l } . The identity 

on symmetric second-order tensors is denoted by I S and has the 

components I S 
i jkl 

= (δik δ jl + δil δ jk ) / 2 . A stiffness tensor C is a posi- 

tive definite fourth-order tensor with minor and major symmetries, 

i.e., C i jkl = C jikl = C kli j . The trace of a stiffness tensor is defined as 

tr ( C ) = C i jkl I 
S 
i jkl 

, where the Einstein’s summation convention is ap- 

plied. The linear map of a second-order tensor over a fourth-order 

tensor is denoted by C [ ε ] . A quadratic form ε · C [ ε ] is computed 

as ε ij C ijkl ε kl , where the Einstein’s summation convention is applied. 

The inverse of a stiffness tensor on symmetric second-order ten- 

sors is denoted by C 

−1 . The ensemble average of a quantity ψ is 

denoted as 〈 ψ〉 , which for ergodic media and the existence of a 

representative volume element V is calculated as ∫ V ψ dV/V. Effec- 

tive quantities are denoted by a bar, e.g., ψ̄ . 

2. Zeroth-order bounds 

2.1. Definition 

We consider an anisotropic linear elastic material behav- 

ior of a multiphase material without pores or cracks for 

statistical homogeneous and ergodic media. The existence of a rep- 

resentative volume element V is assumed. In this case, the micro- 

scopic and effective material laws are given by 

σ( x ) = C ( x )[ ε ( x )] x ∈ V , σ̄ = C̄ [ ̄ε ] , (1) 

with the symmetric Cauchy stress tensor σ, the infinitesimal strain 

tensor ε , and the effective measures σ̄ = 〈 σ〉 and ε̄ = 〈 ε 〉 , re- 

spectively, see Hill (1952) . The effective anisotropic linear elas- 

tic material behavior C̄ connects the effective strains and stresses 

and depends on the material constituents (phases) and the un- 

derlying microstructure (volume fractions, morphology, etc.). In 

case of a scale separation, the effective stiffness is independent 

of the boundary conditions applied to the representative volume 

element. 

Statistical bounds can be formulated in order to enclose the ef- 

fective material behavior by energy principles and consideration of 

some limited amount of statistical information. An elasticity ten- 

sor is called a bound if the material behavior of all realizations 

lies energetically below or above of this tensor. The earliest bounds 

were formulated by Voigt (1910) and Reuss (1929) . They are first- 

order bounds since they require one-point statistical information, 

i.e., volume fractions. These bounds enclose the effective material 

behavior from above and below, describing a region where the 

material behavior of all realizations of the considered materials 

is included. This region reflects, in principle, the design variabil- 

ity offered by the chosen materials. The explicit calculation of all 

one-point statistics for multiple arbitrarily anisotropic materials is, 

however, a complex task if information of design possibilities of a 

single material or of multiphase materials is desired. The zeroth- 

order bounds offer a simple approach for the fast identification 

of the design options of a material with arbitrary anisotropy and 

number of phases. It should be stressed that this set is larger than 

the set enclosed by the first- and higher-order bounds, i.e., the set 

enclosed by the zeroth-order bounds contains trivially the sets en- 

closed by all higher-order bounds, see Lobos and Böhlke (2015) for 

examples for cubic materials. 

The zeroth-order bounds are formulated as the tensors which 

enclose the effective elastic energy density 

W̄ = 

1 

2 

ε̄ · C̄ [ ̄ε ] , (2) 

from above and below, i.e., 

ε̄ · C 

−[ ̄ε ] ≤ ε̄ · C̄ [ ̄ε ] ≤ ε̄ · C 

+ [ ̄ε ] ∀ ̄ε , (3) 

independently of the microstructure arrangement. In the follow- 

ing, this kind of inequalities between quadratic forms will be noted 

shortly as 

C 

− ≤ C̄ ≤ C 

+ . (4) 

An important consequence of this inequalities is that the main 

components of the effective material behavior are enclosed as fol- 

lows (no summation) 

C −αα ≤ C̄ αα ≤ C + αα α ∈ { 11 , 22 , 33 , 23 , 13 , 12 } . (5) 

All other components (non-diagonal components) can also be 

enclosed if the fourth-order tensor is considered as a matrix. 

In Proust and Kalidindi (2006) , degenerated bounds of the non- 

diagonal components are presented. These bounds are correct, are, 

however, not the best possible bounds since they are not opti- 

mal. In Appendix A , the derivation of the optimal bounds of non- 

diagonal components is presented, which are 

�−
αβ

≤ C̄ αβ ≤ �+ 
αβ

α 
 = β ∈ { 11 , 22 , 33 , 23 , 13 , 12 } , 
�−

αβ
= μαβ − 1 

2 

√ 

�α�β , �+ 
αβ

= μαβ + 

1 

2 

√ 

�α�β, 

μαβ = 

1 

2 

(C −
αβ

+ C + 
αβ

) , �α = C + αα − C −αα. (6) 
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