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a b s t r a c t 

This paper describes in detail the formulation of large strain solid mechanics based on the tensor cross 

product, originally presented by R. de Boer (1982) and recently re-introduced by Bonet et al. (2015a) and 

Bonet et al. (2015b). The paper shows how the tensor cross product facilitates the algebra associated 

with the area and volume maps between reference and final configurations. These maps, together with 

the fibre map, make up the fundamental kinematic variables in polyconvex elasticity. The algebra pro- 

posed leads to novel expressions for the tangent elastic operator which neatly separates material from 

geometrical dependencies. The paper derives new formulas for the spatial and material stress and their 

corresponding elasticity tensors. These are applied to the simple case of a Mooney–Rivlin material model. 

The extension to transversely isotropic material models is also considered. 

© 2016 Elsevier Ltd. All rights reserved. 

1. Introduction 

Large strain elastic and inelastic analysis by finite elements or 

other computational techniques is now well-established for many 

engineering applications ( Belytschko et al., 20 0 0; Bonet, 20 01; 

Bonet et al., 2006; Bonet and Wood, 2008; Gee et al., 2009; Gil, 

2006; Gil and Bonet, 2006; 2007; Gil et al., 2010; Hughes, 2000; 

Ortigosa et al., 2015; de Souza Neto et al., 2008; Zienkiewicz et al., 

1998 ). Often elasticity is described by means of a hyperelastic 

model defined in terms of a stored energy functional which de- 

pends on the deformation gradient of the mapping between ini- 

tial and final configurations ( Ball, 1977; 1983; 2002; Ball and Mu- 

rat, 1984; Bonet and Wood, 2008; Ciarlet, 1988; Coleman and Noll, 

1959; Gonzalez and Stuart, 2008; Hill, 1957; Marsden and Hughes, 

1994 ). It has also been shown that for the model to be well de- 

fined in a mathematical sense, this dependency with respect to 

the deformation gradient has to satisfy certain convexity criteria 

( Bonet and Wood, 2008; Gonzalez and Stuart, 2008; Marsden and 

Hughes, 1994 ). The most well-established of these criteria is the 

concept of polyconvexity ( Ball, 1977; 1983; 2002; Ball and Murat, 

1984; Ciarlet, 2010; Dacorogna, 2008; Zhang, 1992 ) whereby the 

strain energy function must be expressed as a convex function of 

the components of the deformation gradient, its determinant and 
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the components of its adjoint or co-factor. Numerous authors have 

previously incorporated this concept into computational models for 

both isotropic and non-isotropic materials for a variety of applica- 

tions ( Kambouchev et al., 2006; Schröder, 2010; Schröder and Neff, 

2003; Schröder et al., 2008; 2010; 2011 ). 

The classical approach consists of ensuring that the stored 

energy function satisfies the polyconvexity condition first but then 

proceed towards an evaluation of stresses and elasticity tensors by 

re-expressing the energy function in terms of the deformation gra- 

dient alone. This inevitably leads to the differentiation of inverse 

functions of the deformation gradient, its transpose or the inverse 

of the right Cauchy–Green tensor. These derivatives are readily ob- 

tained using standard algebra but can lead to lengthy expressions. 

An alternative approach has recently been proposed by Bonet et al. 

(2015b ) and Bonet et al. (2015a ) by recovering the concept of the 

tensor cross-product originally introduced by de Boer (1982) but 

not previously used in continuum mechanics. This tensor cross 

product allows for simpler expressions to be obtained for the area 

and volume maps and their derivatives. The resulting formulas 

for the elasticity tensors provide useful physical insights by sep- 

arating positive definite material components from geometrical 

components. 

The paper explores the proposed formulation both in the ref- 

erence setting, using Piola–Kirchhoff stress tensors and in the 

spatial setting using Kirchhoff and Cauchy stress tensors. Some 

formulas derived with the tensor cross product formulation are 

compared against their classical equivalent versions in order to 

demonstrate the advantages of the proposed methodology. Both 
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Fig. 1. Deformation mapping of a continuum and associated kinematics magnitudes: F , H , J . 

isotropic and anisotropic cases are considered, in the latter case 

anisotropy is restricted to the simple transversely isotropic case. 

The paper illustrates the proposed concepts using the well- 

established model of a Mooney–Rivlin material. 

The paper is organised as follows. Section 2 introduces the 

novel tensor cross product notation in the context of large strain 

deformation. Whilst this product had already been proposed by 

de Boer (1982) (in German), it has not previously been described in 

the English literature or used in the context of solid mechanics, so 

most readers will be unfamiliar with it. This product is used to re- 

express the adjoint of the deformation gradient and its directional 

derivatives in a novel, simple and convenient manner. Section 3 

reviews the definition of polyconvex elastic strain energy functions 

and defines a new set of stresses conjugate to the main kinematic 

variables. The relationships between these stresses and the stan- 

dard first Piola–Kirchhoff stresses are provided. The section also 

derives complementary strain energy functions in terms of the new 

conjugate stresses. The algebra is greatly simplified via the ten- 

sor cross product. The fourth order elasticity tensors are derived in 

this section taking advantage of the tensor cross product operation 

leading to interesting insights into the consequences of convexity. 

Both compressible and nearly incompressible cases are discussed 

in the context of Mooney–Rivlin models, although the extension to 

more general strain energy functions is straight forward. Section 4 

derives similar equations using entirely material tensors such as 

the right Cauchy–Green tensor and the second Piola–Kirchhoff ten- 

sor or spatial tensors such as the Kirchhoff or Cauchy stresses. Ex- 

pressions for both material and spatial elasticity tensor are given 

in the context of the new proposed notation. Section 5 particu- 

larises the above expressions for the case of isotropic and trans- 

versely isotropic materials. A number of mixed and complementary 

energy variational principles are presented in Section 6 . Several of 

these have been used in Bonet et al. (2015b ) for the purpose of 

constructing novel finite element approximations. Finally, Section 7 

provides some concluding remarks and a summary of the key con- 

tributions of this paper. 

2. Definitions and notation 

2.1. Motion and deformation 

Consider the three dimensional deformation of an elastic body 

from its initial configuration occupying a volume V , of boundary 

∂V , into a final configuration at volume v , of boundary ∂v (see 

Fig. 1 ). The standard nomenclature for the deformation gradient 

tensor F and the Jacobian J of the deformation are used 

d x = F d X ; F = ∇ 0 x ; (1a) 

dv = JdV ; J = det 
(∇ 0 x 

)
, (1b) 

where x represents the current position of a particle originally at 

X and ∇ 0 := 

∂ 
∂ X 

denotes the gradient with respect to material co- 

ordinates. Virtual or linear incremental variations of x will be de- 

noted δv and u , respectively. It will be assumed that x satisfy ap- 

propriate prescribed displacement based boundary conditions in 

∂ u V , and that δv and u will satisfy the equivalent homogeneous 

conditions in this section of the boundary. Additionally, the body is 

under the action of certain body forces per unit undeformed vol- 

ume f 0 and traction per unit undeformed area t 0 in ∂ t V , where 

∂ t V ∪ ∂ u V = ∂V and ∂ t V ∩ ∂ u V = ∅ . 
The element area vector is mapped from initial d A to final d a 

configuration by means of the two-point tensor H , which is related 

to the deformation gradient via Nanson’s rule ( Bonet and Wood, 

2008 ): 

d a = H d A ; H = det 
(∇ 0 x 

)(∇ 0 x 
)−T 

. (2) 

Clearly, the components of this tensor are the order 2 minors 

of the deformation gradient and it is often referred to as the co- 

factor or adjoint tensor, that is H = Cof 
(∇ 0 x 

)
. This tensor and its 

derivatives will feature heavily in the formulation that follows as it 

is a key variable for polyconvex elastic models. Its evaluation and, 

more importantly, the evaluation of its derivatives using Eq. (2) is 

not ideal, and a more convenient formula can be derived for three 

dimensional applications. This relies on the use of a tensor cross 

product operation, presented from the first time in Ref. ( de Boer, 

1982 ), page 76, but included in 2.2 for completeness. 

The relationships between { F , H , J } and the geometry x via 

Eqs. (1) and (2) represent three geometric compatibility conditions, 

which can be re-expressed in a more helpful manner via the tensor 

cross product defined below. 

2.2. Tensor cross product 

The key elements of the framework proposed is the extension 

of the standard vector cross product to define the cross product be- 

tween second order tensors and between tensors and vectors. This 

rediscovers the work of de Boer (1982) which, to the best knowl- 

edge of the authors, does not appear in any English language publi- 

cation. The original nomenclature in de Boer (1982) is “Das äu βere 
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