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a b s t r a c t 

This study is devoted to the effective elastic properties of nanoporous media containing spherical 

nanovoids. Nanocomposites materials are strongly dependent on their nanometric characteristic lengths. 

This size effect cannot be directly modeled using the classical homogenization schemes based on the 

Eshelby inclusion problem. However recent studies have extended the continuum mechanics and well- 

known micromechanical models to the nanoscale. In this paper, it is shown that these models can be re- 

placed in a unified framework using the morphologically representative pattern-based approach of Stolz 

and Zaoui (1991) and therefore can be generalized to more complex microstructures. Following this ap- 

proach, new bounds and estimates are derived. Two particular cases are treated: (i) the case of an el- 

lipsoidal spatial distribution of the voids, (ii) the case of a biporous material containing both spherical 

nanovoids and randomly oriented spheroidal microvoids. The second case is typical of the microstructure 

of the irradiated uranium dioxide (UO 2 ). Thereby, the associated result could be used for determining the 

poro-elastic properties of these doubly voided materials. 

© 2016 Elsevier Ltd. All rights reserved. 

1. Introduction 

Nanoporous materials can be classified into the category of 

nanocomposites materials in which the characteristic length is typ- 

ically of the order of a few nanometers ( < 100 nm, Paliwal and 

Cherkaoui (2012) ). The particularity of this kind of materials is the 

high surface/volume ratio. Indeed, atoms near a surface are in a 

different local environment than those in the bulk: their coordina- 

tion number is less than that of the bulk atoms and their energy is 

different ( Duan et al., 20 05a; 20 05b; Paliwal and Cherkaoui, 2012; 

Wang et al., 2011 ). Therefore there is a disturbed region some- 

times called the interfacial region whose thickness is of the order of 

few atomic layers (about one nanometer), which has a local elas- 

tic behavior different from that of the bulk ( Paliwal and Cherkaoui, 

2012; Wang et al., 2011 ). The impact of surfaces is often negligible 

in classical continuum mechanics but becomes predominant when 

the number of surface atoms is high as in nanocomposite mate- 

rials ( Brisard et al., 2010a; Duan et al., 20 05a; 20 05b; Le Quang 

and He, 2008; Paliwal and Cherkaoui, 2012; Wang et al., 2011 ). In 
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particular, such surface effects have to be considered when deriv- 

ing a model for the effective elastic behavior of these materials. 

The main consequence of the surface effects is a strong depen- 

dency of the effective properties to the nanometer characteristic 

length ( Duan et al., 2005b; Paliwal and Cherkaoui, 2012; Sharma 

and Ganti, 2004 ). The present study is devoted to the modeling of 

the elastic properties of porous materials which exhibits cavities 

whose characteristic length is in the nanometer range. 

Indeed, this is the case of the irradiated uranium dioxide (UO 2 ), 

which is commonly used as a nuclear fuel. The modeling of its 

mechanical behavior from up-scaling methods has recently moti- 

vated several studies (see for example Julien et al. (2011) ; Vincent 

et al. (2008) ; Vincent et al. (20 09a , 20 09b ); Vincent et al. (2014a , 

2014b )). This material contains intragranular cavities whose radii 

range between one and ten nanometers and pore density from 

10 23 m 

−3 to 10 24 m 

−3 ( Kashibe et al., 1993 ). Jelea et al. (2011) have 

carried out atomistic simulations and have determined the elas- 

tic moduli of a system built with periodic UO 2 elementary cells 

containing spherical nanocavities. Their results are compared to 

classical homogenization schemes in elasticity (Mori–Tanaka and 

self-consistent) and experimental data. Although there is a good 

agreement between the different results, it was shown that a sur- 

face effect exists at the scale of nanometric intragranular cavities in 

UO 2 and the results obtained from the homogenization approach 

could be improved by taking into account these surface effects. 
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Description of the disturbed region. The first step to derive a mi- 

cromechanical model with surface effects consists in giving a me- 

chanical description to the disturbed region. There are mainly two 

ways to model this region. The first way is a zero thickness ap- 

proach and the disturbed region is treated as an ‘interface’. The 

interface stress model or ‘imperfect coherent interface model’ as- 

sumes that the traction vector is discontinuous across the surface 

and the displacement is continuous ( Brisard et al., 2010a; 2010b; 

Duan et al., 20 05a; 20 05b; 20 05c; 20 06; 20 07; Le Quang and He, 

2008; Paliwal and Cherkaoui, 2012; Sharma and Ganti, 2004; Wang 

et al., 2005; 2011; 2007 ). This model is a limit case of a thin and 

stiff interphase ( Wang et al., 2005 ) and is often used to model the 

disturbed region for nanocomposite materials. 

The second way describes the disturbed region as an ‘inter- 

phase’ ( Marcadon, 2005; Paliwal and Cherkaoui, 2012 ), i.e. as a 

classical three-dimensional coating. Although this approach is less 

used than the interface stress model, it makes no assumption con- 

cerning the stiffness and the thickness of the disturbed region. 

However it often leads to more complex analytical results. 

Homogenization process. Once the description of the interfacial 

region is chosen, it has to be integrated in the homogenization pro- 

cess to derive models. Most of the classical micromechanical mod- 

els are based on the Eshelby inclusion problem ( Eshelby, 1957 ) and 

cannot deal with surface effects. Relatively recent works ( Brisard 

et al., 2010a; 2010b; Duan et al., 2005b ) have extended these 

classical models to the case of nanocomposite materials, particu- 

larly the Hashin (1962) composite sphere assemblage model, the 

Mori and Tanaka (1973) model, and the generalized self-consistent 

model ( Christensen and Lo, 1979 ). These models, developed by 

analogy with their classical counterparts, are based on a modi- 

fied inclusion problem in which the perfect interface 1 between 

the spherical inclusion and the surrounding medium is replaced 

by an imperfect coherent interface (as stated above, the term co- 

herent means that the displacement field is continuous across the 

interface). The solving of this problem generally leads to non- 

uniform deformation fields inside the inclusion. This generaliza- 

tion of the classical results is limited to the case of materials 

containing nanospherical inclusions isotropically distributed inside 

the bulk. However, it is shown in the sequel that they can be 

derived in the theoretical framework of the morphologically rep- 

resentative pattern (MRP) theory ( Bornert, 1996a; 1996b; 2001; 

Bornert et al., 1996; Stolz and Zaoui, 1991 ) and thus extended to 

the case of materials with more complex microstructures such as 

an ellipsoidal spatial distribution of voids. 

Morphologically representative pattern. The MRP theory extends 

the classical approach: it allows us to take some finer details of 

the microstructure into account and particularly the local arrange- 

ment of the phases. It is convenient in the case of nanoparticulate 

composites (also called materials with an inclusion-matrix mor- 

phology 2 ), in which the disturbed region is included between the 

matrix and the heterogeneities and locally perturbs the mechani- 

cal fields. The establishment of the effective elastic moduli through 

this approach requires the solving of auxiliary problems related 

to heterogeneous inclusions embedded in an infinite medium. In 

the case of the spherical inclusions or voids, these auxiliary prob- 

lems are similar to those solved by Duan et al. (2005b ) and cor- 

respond to a single spherical inclusion coated with a disturbed 

region (modeled as an interface or an interphase) surrounded by 

a matrix phase. It is shown here that the MRP approach delivers 

a better understanding concerning the assumptions underlying in 

the already existing models. 

1 A perfect interface (or a perfect bonding condition) means that the traction vec- 

tor and the displacement are continuous across two adjacent media. 
2 The material is made of a predominant phase in which heterogeneities (inclu- 

sions, voids or heterogeneous inclusions) are included. 

The present study is organized as follows. The interface stress 

model typically used for nanomaterials is shortly described in 

Section 2 . In Section 3 , the theory and the main results concern- 

ing the MRP approach are summarized. This section is also devoted 

to a direct use of the MRP theory in the case of nanoporous ma- 

terials and it is shown that the existing models can be directly 

derived from the MRP approach. Section 4 deals with some orig- 

inal results, corresponding to particular cases that can be easily 

treated following the MRP theory. It illustrates the ability of the 

MRP approach to catch the effective elastic properties of materi- 

als containing nanospherical voids. Two particular cases are dis- 

cussed in this section: (i) spheroidal spatial distributions of voids, 

(ii) a biporous medium containing spherical nano voids together 

with larger spheroidal voids. The second case is typical of the mi- 

crostructure of irradiated UO 2 and the results are then plotted with 

characteristic moduli for this material. 

2. Nanomaterials: modeling of the disturbed region with the 

interface stress model 

As already stated, the interface stress model is intensively used 

in the case of nanomaterials. It assumes a traction vector jump 

across the interface whereas the displacement is continuous. This 

model has been proposed by Gurtin and Murdoch (1975) develop- 

ing a theoretical framework for the mechanical behavior of mate- 

rial surfaces. 

The Gurtin and Murdoch model consists in a set of two equa- 

tions: a surface constitutive law and a balance equation. The sur- 

face constitutive law is assumed to be composed of two parts: a 

surface internal stress, called by analogy with liquids a ‘surface 

tension’, which is independent on the external loading and an elas- 

tic part whose moduli are distinct from those of the bulk. The elas- 

tic behavior is often assumed to remain isotropic in the tangent 

plane. For polycristals with intragranular nanocavities, such as the 

irradiated UO 2 , due to the crystal anisotropy, the mechanical be- 

havior of the disturbed region around each cavity is probably not 

isotropic. It is unlikely that the disturbed region is in a particular 

crystallographic orientation and it is certainly randomly oriented. 

Although the hypothesis of an isotropic elastic behavior of the dis- 

turbed region is not really equivalent to the case of randomly ori- 

ented disturbed regions, the complexity generated by anisotropy to 

develop non-numerical micromechanical models would be higher 

than the gain of precision by taking account of it ( Duan et al., 

2005b; Paliwal and Cherkaoui, 2012 ). As a result, the elastic be- 

havior of the surface is commonly considered as isotropic. 

The surface between two media (1 and 2) is denoted by �. The 

unit normal vector to � (oriented from 1 to 2) is denoted by n and 

the two vectors t t and t b are unit vectors contained in the tangent 

plane to �. These three vectors are assumed to be pairwise orthog- 

onal and ( t t , t b , n ) forms a vector basis for 3 dimensional vectors 

( n = t t ∧ t b ). The couple ( t t , t b ) is a basis for surface tangent vec- 

tors. The second-order identity tensor in the tangent plane i T and 

the fourth-order identity tensor in the tangent plane I T are defined 

as: 

i T = i − n ⊗ n (1) 

I T = 

∑ 

α,β= t,b 

[ 
t α ⊗ t α ⊗ t α ⊗ t α

+ 

1 

2 

(
t α ⊗ t β ⊗ t α ⊗ t β + t α ⊗ t β ⊗ t β ⊗ t α

)] 
(2) 

where i is the classical second -order identity tensor ( i kl = 1 if k = l, 

i kl = 0 otherwise) and ⊗ denotes the tensor product. The two ten- 

sors i T and I T can be seen as projectors onto the surface, in the 

sense that they serve to extract the tangential parts of vectors or 
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