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A state-based peridynamic formulation for linear elastic shells is presented. The emphasis is on introduc-
ing, possibly for the first time, a general surface based peridynamic model to represent the deformation
characteristics of structures that have one geometric dimension much smaller than the other two. A new
notion of curved bonds is exploited to cater for force transfer between the peridynamic particles describ-
ing the shell. Starting with the three dimensional force and deformation states, appropriate surface based
force, moment and several deformation states are arrived at. Upon application on the curved bonds, such
states yield the necessary force and deformation vectors governing the motion of the shell. By incorpo-
rating a shear correction factor, the formulation also accommodates analysis of shells that have higher
thickness. In order to attain this, a consistent second order approximation to the complementary energy
density is considered and incorporated in peridynamics via constitutive correspondence. Unlike the un-
coupled constitution for thin shells, a consequence of a first order approximation, constitutive relations
for thick shells are fully coupled in that surface wryness influences the in-plane stress resultants and sur-
face strain the moments. Our proposal on the peridynamic shell theory is numerically assessed against
simulations on static deformation of spherical and cylindrical shells, that of flat plates and quasi-static
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1. Introduction

Great leaps in computing power over the last few decades have
enabled researchers to undertake numerical simulations of myr-
iad complex, multi-scale and multi-physics problems of interest in
continuum solid mechanics that were erstwhile unsolvable. Nu-
merical techniques such as the finite element method (FEM) as
well as mesh-free discretization schemes, e.g., smoothed particle
hydrodynamics (SPH), reproducing kernel particle method (RKPM),
moving least square Petrov-Galerkin method (MLPG) and so on
have provided the necessary formalism in obtaining finite dimen-
sional approximations to solutions of such initial boundary value
problems (IBVP) that describe, often in terms of partial differential
equations (PDEs), the laws of motion. Although PDE-centric for-
mulations have been successful in modelling phenomena ranging
from elastic response of solids to more complicated problems in-
volving, for instance, propagating discontinuities in dynamic crack
propagation, void growth and contact mechanics, its formal math-
ematical structure does not provide an ideal setup for applications
to scenarios that must deal with evolution of discontinuities, e.g.
crack nucleation and growth and other such problems in contin-
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uum damage mechanics. The partial derivatives in PDEs are not de-
fined in the classical sense on the lines/surfaces of discontinuities
and no valid diffeomorphism is at hand to relate the deformed and
reference configurations. Computational methods for solving such
problems using the PDE-based theory either require a redefinition
of the object manifold so that discontinuities lie on the boundary
or some special treatment to define spatial derivatives of field vari-
ables on a cracked surface (see Bittencourt et al., 1996, Belytschko
and Black, 1999 and Areias and Belytschko, 2005).

Recently, Silling (2000) introduced a reformulation of contin-
uum theory, namely, the peridynamics (PD), which can, by de-
sign, treat discontinuities. The primary feature that enables PD
to deal with spontaneous emergence and propagation of discon-
tinuity in solids, is the representation of equations of motion in
integro-differential form, and not by PDEs. The integro-differential
format of the governing equations relaxes, to a significant extent,
the smoothness requirement of the deformation field, thereby al-
lowing for discontinuities as long as the spatial integrals remain
Riemann-integrable. PD equations of motion are based on a model
of internal forces that the material points exert on each other over
finite distances. Such finite distance interactions lend a non-local
character to the formulation and allow for length scale effects aris-
ing from the action at a distance. This inherent non-local feature
in PD theory is useful in modelling a broad class of non-classical
phenomena. An initial formulation, the bond-based PD, considered
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internal forces as a network of interacting pairs like springs, that is,
it described spring-like interactions via pair potentials. The interac-
tion of a material particle with its surroundings is restricted to a
finite neighbourhood and is denoted as the horizon of the particle.
Such pair-wise interaction however led to an over-simplification of
the model and in particular resulted in an effective Poisson’s ratio
of 1/4 in case of linear isotropic elastic materials. This limitation
has been overcome through a generalization of the PD model, the
state-based PD (Silling et al., 2007). According to the state-based
PD philosophy, the bond force between two interacting particles is
no longer governed by a central potential independent of the be-
haviour of other bonds; instead it is determined by the collective
deformations of bonds within the horizon of a material particle.
This version of the PD theory eliminates the restriction on Pois-
son’s ratio and is applicable over the entire permissible range. Even
though the PD has many attractive features, the scarcity of strictly
PD-based material constitutive models tends to limit its applica-
bility. A remedy to this is however proposed using a constitutive
correspondence framework (Silling et al., 2007), enabling the use
of classical material models in a PD formulation.

These features of the PD have attracted interest in solving solid
mechanics problems especially those involving material damage.
Most such attempts deal with the full-blown 3D model of con-
tinua, whilst a few rest consider the in-plane response within
plane stress or plane strain type material modelling. Even though
examples of structures resisting transverse deformation with one
dimension (e.g. the thickness) significantly smaller than the other
two are aplenty (e.g. aircraft fuselage, ship hull, pressure vessel,
roofs of civil structures, turbine blades and so on), very few at-
tempts in the PD literature are available that exploit the possibility
of efficiently modelling such 3D bodies in terms of locally 2D equa-
tions of motion. To cite some instances of dimensionally reduced
PD models, we refer to Silling et al. (2003) for 1D bar formula-
tion, Chowdhury et al. (2015) and O’Grady and Foster (2014a)for
1D beams, Silling and Bobaru, (2005) for 2D membranes, Taylor
and Steigmann (2013), O’Grady and Foster (2014a) and Diyaroglu
et al. (2015) for plates and flat shells. Such studies are useful to
relieve the extensive computational overhead generally associated
with the discretization of a 3D model. For instance, if the so-called
thickness dimension is small, use of the 3D model would typically
demand a rather fine discretization in the through-thickness di-
rection en route to an accurate representation of the resistance to
bending. This may need prohibitively expensive computational ef-
fort. The 2D formulations address this issue by an analytical ac-
counting of the stress and deformation fields along the thickness
direction and thus avoid through-thickness discretization. Studies
by Taylor and Steigmann (2013), O’Grady and Foster (2014b) and
Diyaroglu et al. (2015) reflect a few such efforts, with the first re-
ducing a 3D bond-based PD formulation to 2D in order to model
bending characteristic of plates, the second deriving a state-based
PD model for plates and flat shells and the third offering another
bond based formulation for plates. While the bond based plate for-
mulation of Taylor and Steigmann suffers from the usual limitation
of Poisson’s ratio being reduced to 1/4, O’Grady and Foster’s state-
based model is applicable for the entire permissible range of Pois-
son’s ratio. Even though the three models noted above can analyse
transverse deformation of flat structures, deformation of a 'thin’ 3D
body that may be described with reference to a curved base sur-
face cannot be analysed by them. Owing to the curvature of the
surface, analysis of such structures is more complicated than that
of flat structures, as transverse bending effects generally get cou-
pled with stretching. Moreover a flat plate model may always be
recovered as a limiting case of a curved shell model. To the best
of the authors’ knowledge, there exists no generic surface-based
PD formulation to deal with such problems. In contrast, the lit-
erature on classical continuum mechanics is rich with an abun-

dance of shell models. In classical shell modelling, kinematics and
kinetics of the 3D body are described through tensor quantities
defined over a base surface, typically the mid surface. The gov-
erning equations of motion and constitutive relations for a shell,
in terms of these surface based tensor quantities, may be arrived
at via through-thickness integration of the 3D equations of mo-
tion and constitutions, respectively. Shell equations so obtained in-
clude only two independent surface coordinates vis-a-vis three in-
dependent ones in the 3D model. Strain measures referred to the
base surface may be obtained from the power balance equation as
quantities conjugate to shell stress measures. Assumed variation of
the displacement field along the thickness direction is made use of
in identifying the appropriate shell strains (Reissner, 1941, Naghdi,
1973, Reddy, 2007).

Depending on their thickness, shells are categorised as either
thin or thick. While shear deformation is negligible for thin shells,
it does play an important role in describing the deformation
kinematics of thick shells. Even when a shell is 'thick’, thickness
is generally not large enough to warrant a full-fledged 3D con-
tinuum model. Classical analyses of thick shells typically follow
a Reissner type hypothesis that allows for shear deformation.
In order to derive shell constitutive relations reflecting an ac-
ceptably accurate distribution of transverse shear stress, the 3D
complementary energy density with a suitable splitting of stress
components is made use of. Following series expansions of the
3D stress components in the thickness direction in terms of the
surface force, transverse force and moments, through-thickness
integration and a subsequent Fréchet derivative of the effective
complementary energy density leads to the dimensionally reduced
constitutions. Transverse forces are expressed in a manner that
accounts for their possible variations across the thickness. The
detailed information on the through-thickness variation is how-
ever lost and only averaged quantities are retained. The conflict
arising out of the inherently incongruent nature of the shear force
(which is a stress resultant) and the prescribed traction boundary
conditions on the shell surface is often avoided by advocating
a shear correction factor in the classical theory of thick shells.
Exclusion of this factor shows up in the unphysical feature of the
response being stiffer. Another important aspect in this theory
is the presence of terms that couple surface force and moment
measures in the complementary energy density. The coupling
terms are significant when the curvature of the base surface is
substantial; see Pietraszkiewicz et al. (2006, 2014).

In the present work, a surface based PD formulation, possibly
the first of its kind and applicable for general curved shells, is
set forth. A non-ordinary state-based approach is adopted. The 3D
state-based PD equations are reduced to their surface representa-
tions by defining new force and moment state fields obtainable
from 3D force states upon appropriate integration over the thick-
ness direction. The proposed set of equations that describes the
motion of shell is shown to satisfy the global requirements of lin-
ear and angular momenta balances for the 3D body. New deforma-
tion state fields referred to the base surface are identified from the
energy balance equation. These states appear as conjugate quanti-
ties to the force and moment states in internal energy expression.
A new notion of curved bonds replacing straight bonds in the stan-
dard PD theory is introduced. The curved bonds facilitate transfer
of force and moment between PD particles. Also the ‘size’ of the
horizon of a particle, which is of curved surface geometry, is de-
cided by fixing a maximum length of curved bonds within it. In
order to model the shear deformation effect in thick shells, a split-
ting of the 3D transverse force and deformation vector states is
carried out in the PD power balance equation. Integrating along
the thickness, deformation states are then identified as conjugate
to the corresponding force states. The force state in the transverse
direction and the corresponding deformation state are separately
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