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a b s t r a c t 

For periodically inhomogeneous media, a generalized theory of elastodynamic homogenization is pro- 

posed so that even the long-wavelength and low-frequency asymptotic expansions of the resulting ef- 

fective (or macroscopic) motion equation can, approximately but simultaneously, capture all the acoustic 

and some of the optical branches of the microscopic dispersion curve. The key to constructing the gen- 

eralized theory resides in incorporating new kinematical degrees of freedom in conjunction with rapidly 

oscillating body forces as microscopic and macroscopic loadings while satisfying an energetical consis- 

tency constraint reminiscent of Hill –Mandel lemma. By this constraint, an effective displacement field is 

naturally defined as the projection of a microscopic one onto the dual to the space of body forces. To 

illustrate these results, a two-phase string is studied in detail. 

© 2016 Elsevier Ltd. All rights reserved. 

1. Introduction 

The elastodynamic homogenization approaches reported up to 

now in the literature are observed to run into difficulties when be- 

ing used to model dynamical effects over a wide frequency range. 

1. The classical lowest-order Long-Wavelength (LW) Low- 

Frequency (LF) homogenization approaches ( Bensoussan et al., 

1978; Sanchez-Palencia, 1980 ) yield a homogeneous substitu- 

tion Cauchy medium which misses all dispersive effects and all 

internal resonances, i.e., all optical oscillation modes. 

2. The higher-order LW-LF asymptotic homogenization approaches 

( Andrianov et al., 2008; Boutin and Auriault, 1993 ) lead to ef- 

fective strain-gradient media which can model well dispersive 

behaviors and size effects but are valid only near the acoustic 

branches independently of the order of the asymptotic approx- 

imations used. 

3. The high-frequency asymptotic approaches ( Antonakakis et al., 

2014; Boutin et al., 2014; Colquitt et al., 2014; Craster et al., 

2010; Daya et al., 2002; Nolde et al., 2011 ) are successful in 

capturing high-frequency optical modes but still valid only in 

the vicinity of some finite frequency. 

4. The high-contrast asymptotic approaches ( Auriault and Bon- 

net, 1985; Auriault and Boutin, 2012; Smyshlyaev, 2009 ) have a 

wide frequency validity domain englobing an infinite number of 
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optical branches. However, the corresponding effective behavior 

is complex and nonlocal in time. 

5. The non-asymptotic theory of Willis (1997 , 2011) yields exactly 

the whole dispersion curve. Nonetheless, the described effective 

fields are only relevant for low frequencies ( Nassar et al., 2015b; 

Srivastava and Nemat-Nasser, 2014 ). 

The main purpose of the present paper is to construct a gener- 

alized theory of elastodynamic homogenization for periodic media 

which improves the quality of the Willis effective behavior as an 

approximation to the microscopic behavior in a way that LW-LF 

asymptotic expansions become able to capture, approximately but 

simultaneously, all the acoustic and some of the optical branches 

of the microscopic dispersion curve. To achieve this purpose, new 

kinematical Degrees Of Freedom (DOFs) are taken into account so 

as to describe some short-wavelength components of the micro- 

scopic displacement field which become dominant at high frequen- 

cies. The new DOFs are excited by incorporating various rapidly 

oscillating body forces on the microscale and on the macroscale 

under an energetical consistency constraint hereafter called En- 

ergy Equivalency Principle (EEP). The EEP is a balance between the 

microscopic and macroscopic virtual works and is later proven to 

yield a generalized version of the well-known Hill –Mandel lemma. 

With respect to Willis theory, we underline two major differences. 

First, the incorporated loadings are much richer than those em- 

ployed by Willis (1997 , 2011) . This has the consequence of reduc- 

ing the error committed during the upscaling process and provid- 

ing an extended frequency validity domain. Second, the EEP con- 

cerns virtual works and not their expectancies. From the physical 
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standpoint, this leads to a clear distinction between the macroscale 

and the microscale in terms of wavelengths. Nevertheless, it should 

be pointed out that the generalized theory presented here is by 

construction limited to periodically inhomogeneous media while 

Willis theory is formally valid both for periodically and randomly 

inhomogeneous media. 

The paper is organized as follows. In Section 2 , we recall some 

geometrical elements useful for describing periodic media, summa- 

rize the equations governing the kinematics and dynamics of them, 

and simplify these equations by using Bloch-wave expansions. The 

main body of the generalized theory is presented in Section 3 . The 

EEP is first postulated; the space of admissible body forces is then 

defined as the set of macroscopically applied loadings; the effec- 

tive displacement field associated to a microscopic displacement is 

obtained by the EEP and proven to be an improvement over the 

one defined by Willis; the effective motion equation is finally de- 

rived in a formal way and a Hil –Mandel relation is demonstrated. 

In Section 4 , an analytical LW-LF asymptotic approximation to the 

effective motion equation is given for a particular 1D two-phase 

string. Exact and approximate dispersion curves are plotted and 

compared. It appears then how the resulting asymptotic model, 

though based on LF expansions, can simultaneously capture acous- 

tic and optical branches while conserving a low-order local motion 

equation. 

2. Preliminaries 

In this section, some geometrical elements useful for the study 

of periodic media are recalled. The governing equations of linear 

elasticity are recapitulated. Bloch-wave expansions of fields and 

work are also introduced. 

2.1. Geometry and periodicity 

Let � be a d -dimensional infinite body. Define E as the vector 

space of translations acting on the points of �. Given d indepen- 

dent translations (b j ) j=1 ... d , denote by R the subset of E obtained 

by integer combinations of these vectors. The subset R is called 

a lattice. Then, a scalar, vector or tensor field h defined over � is 

said to be R-periodic if and only if it satisfies h (x + r) = h (x ) for 

all points x ∈ � and all translations r ∈ R. Accordingly, h needs 

being defined only over a unit cell 

T = 

{ 

x o + r 

∣∣∣∣r = 

d ∑ 

j=1 

r j b j , −1 / 2 ≤ r j < 1 / 2 

} 

⊂ �, 

where x o , its center, is an arbitrary point of �. Note that while 

R-periodicity is well defined, the choice of b j and T is not unique. 

Symbolize by E ∗ the dual space of E . A wavenumber k ∈ E ∗ act- 

ing on a translation r ∈ E produces a phase shift k · r where ( ·) is 
the usual dot product. Now, points of � and vectors of E can be 

identified after choosing some origin x o . In what follows, we drop 

x o so as to write k · x instead of k · (x − x o ) for simplicity. The re- 

ciprocal lattice R 

∗ of the direct lattice R is defined as the subset 

of E ∗ consisting of wavenumbers ξ such that e i ξ · x is R-periodic, 

with i 2 = −1 . Also of interest is the first Brillouin zone T ∗ defined 

as the set of wavenumbers closer to the null wavenumber than to 

any other wavenumber of R 

∗, i.e., 

T ∗ = 

{
k ∈ E ∗|‖ k‖ < ‖ k − ξ‖ , ∀ ξ ∈ R 

∗ − { 0 } }. 

This zone is uniquely defined and independent of T . 

A function h defined over � can be expanded into plane waves 

over E ∗ such that 

h (x ) = 

∫ 
E 

∗
˜ h k e 

i k·x d 

d k. 

In particular, when h is R-periodic, it can be written as the Fourier 

series 

h (x ) = 

∑ 

ξ∈ R 

∗

˜ h ξe i ξ·x . 

Having this in mind, with respect to R, T ∗ can be seen as the sup- 

port of slowly varying fields. In particular, among R-periodic func- 

tions, only constants have their wavenumber contained in T ∗, i.e., 

T ∗ ∩ R 

∗ = { 0 } . 
Finally, call a Bloch wave, of wavenumber k and amplitude 

˜ h k (x ) , a function h k ( x ) of the form 

h k (x ) = 

˜ h k (x ) e i k·x , 

where ˜ h k (x ) is R-periodic. 

2.2. Constitutive and motion equations 

Letting u ( x , t ) be the displacement vector for a point x ∈ � at 

instant t , the strain field ε and velocity field v are derived accord- 

ing to 

ε = ∇⊗s u , v = 

˙ u , 

where ∇ is the space gradient operator, ⊗ denotes the tensor 

product, the superscripted “s ” indicates symmetrization and a su- 

perscripted dot symbolizes differentiation with respect to time. 

The stress tensor σ and momentum density p are then given by 

the local constitutive equations of �: 

σ = C : ε , p = ρv , 

with C and ρ being the elastic stiffness tensor and the scalar mass 

density, respectively, and the colon (:) standing for double contrac- 

tion. 

The motion equation of � reads 

∇ · σ + f = 

˙ p 

where ( ∇·) is the divergence operator and f is a field of externally 

applied body forces. We shall mostly work with harmonic fields 

of frequency ω. Therefore, all time derivatives can be substituted 

by i ω-multiplications and time dependency can be dropped hence- 

forth. The motion equation of � becomes the Helmholtz equation 

∇ ·
[
C(x ) : 

(∇⊗s u (x ) 
)]

+ f (x ) = −ω 

2 ρ(x ) u (x ) (2.1) 

where we have displayed x -dependencies and omitted ω- 

dependencies. 

In this work, the homogenization of � amounts to finding the 

motion equation, hereafter called “effective motion equation”, of a 

homogeneous medium substituting the initial inhomogeneous one, 

under an energy equivalency constraint to be specified. 

2.3. Bloch-wave expansions 

The superposition principle makes it possible to work with ele- 

mentary, such as plane-wave, body forces instead of arbitrary ones 

f ( x ). It is however more convenient, for reasons that will become 

clear, to work with Bloch-wave body forces. Then, let f k ( x ) be an 

element of the Bloch-wave expansion of f ( x ) such that 

f (x ) = 

∫ 
T ∗

f k (x ) d 

d k ≡
∫ 

T ∗
˜ f k (x ) e i k·x d 

d k, (2.2) 

where ˜ f k (x ) is R-periodic and the symbol ≡ stands for equality by 

definition. 

For a given k ∈ T ∗, the motion equation for a Bloch-wave body 

force takes the form 

∇ ·
[
C(x ) : 

(∇⊗s u k (x ) 
)]

+ 

˜ f k (x ) e i k·x = −ω 

2 ρ(x ) u k (x ) . 
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