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a b s t r a c t

The linear elastic analytical solution of an axisymmetric probe indenting a semi-infinite half-space forms the

backbone of most indentation data analysis protocols. It has been noted in the literature that the theoretical

solution relies on a boundary condition that is ill-posed which leads to discrepancies from the actual response

that depends, among other parameters, on the Poisson’s ratio of the indented material. While correction

factors have been proposed, prior studies have concentrated on the positive Poisson’s ratio regime and have

neglected an exciting and developing class of materials: the auxetic systems. The finite element method is

used to simulate the conical indentation response of elastic materials with Poisson’s ratios covering the whole

thermodynamically possible range, −1 ≤ ν ≤ 0.5. Consistent with theoretical predictions, the indentation

resistance and hardness of auxetic materials is enhanced compared to their non-auxetic counterparts. The

stress profiles and contact details are systematically analyzed and the increase in resistance is traced to the

shear stiffening and the reduction of contact area compared to conventional materials. Furthermore, it is

shown that the analytical linear elastic solution falls short in accurately describing the indentation response,

especially for negative Poisson’s ratio materials. In contrast to the theoretical prediction, the contact area

reduces as the Poisson’s ratio increases resulting in increased required force to penetrate the material and

an enhanced pressure distribution beneath the indenter. The analytical solution is corrected for the whole

ν range and best fit polynomials are proposed for ease-of-use. The effects of contact-friction and indenter

cone-angle are also studied and quantified.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Instrumented indentation has developed into a standardized

tool for nano- and micro-mechanical characterization of materials

(Bulychev et al., 1975; Doerner and Nix, 1986; Fischer-Cripps, 2002;

Oliver and Pharr, 2011,1992). It was initially introduced for character-

izing thin films and sub-micron material volumes but it has expanded

its application range into studying virtually all classes of material sys-

tems: metals (Schuh, 2006; Tabor, 2000), ceramics (Cook and Pharr,

1990; Lawn, 1998; Wachtman et al., 2009), polymers (Tweedie et al.,

2007; Vandamme et al., 2012; VanLandingham et al., 2001) and com-

posites (Constantinides et al., 2009, 2006, 2003; Němeček et al.,

2013).

The current state of hardware and electronics ensures that loads

and displacements can be recorded with nN and angstrom scale res-

olutions, respectively, and force-displacement curves are nowadays

routinely collected either in the nanometer or micrometer regime.
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An equally important step in the nanomechanical characterization of

materials is the conversion of experimental data into meaningful ma-

terial properties. There are several analytical approaches for complet-

ing this step most of which have focused on the indentation modulus

(E∗) and hardness (H) of the material:

E∗ =
√

π

2

S√
Ac

(1)

H = Pmax

Ac
(2)

where S is the unloading slope at maximum depth (hmax), S =
dP/dh|hmax

, Ac is the area of contact at maximum load (Pmax). E∗ and

H, under certain circumstances, can be converted to the elastic modu-

lus (Borodich and Keer, 2004a, 2004b; Pharr et al., 1992) and strength

characteristics (Cariou et al., 2008; Ganneau et al., 2006; Tabor, 2000)

of the indented system. In the case of a rigid indenter E∗ relates to the

plane stress modulus of the material, E∗ = E
(1−ν2)

Directly or indirectly most analysis methods make use of the an-

alytical solution of an axisymmetric indenter being pushed against a

semi-infinite, linear elastic half-space. In fact Eq. (1) can be directly
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derived from the linear elastic solution (Bulychev et al., 1975; Oliver

and Pharr, 1992) and it has been proven that it holds true for any

indenter that can be described as a solid of revolution (Pharr et al.,

1992). Impressively enough, the equation is still valid even if the ma-

terial exhibits elastic–plastic response with the only provision that

the area of contact is properly accounted for in the analysis (Cheng

and Cheng, 1997). In other words all plasticity phenomena are incor-

porated into the area of contact and provided that this is accurately

captured, Eq. (1) continues to hold.

Several finite element studies (Bolshakov and Pharr, 1998; Cheng

and Cheng, 1999, 1998; Dao et al., 2001; Troyon and Huang, 2011)

have pointed out that computational results deliver consistently

higher values of the modulus of elasticity when calculated through

Eq. (1). A detailed analysis by Hay et al., (1999) in her, by now, classic

paper of 1999 has deciphered the origins of this discrepancy which

has its roots on an inaccurate boundary condition used in the for-

mulation of the mathematical problem that has been analytically

solved (see Section 2); the issue of tangential displacements has also

been reported in several other studies (Argatov, 2004; Kindrachuk

et al., 2009), see also discussion and references in Borodich (2014)).

Through finite element modeling they have quantified this uncer-

tainty and they have formulated analytical approximations for a cor-

rection factor γ for Eq. (1) based on simple modifications of Sned-

don’s solution, which proved to be a function of Poisson’s ratio of the

material (ν) and the cone semi apex angle (θ ):

E∗ = 1

γ

√
π

2

S√
Ac

(3)

γ = 1 + β

4 tan θ
(4)

γ = π
π
4

+ 0.15483073 cot θ β
4(

π
2

− 0.83119312 cot θ β
4

)2
(5)

where β = 1−ν
1−2ν . Eq. (4) is best suited for cube-corner indenters

whereas Eq. (5) for Berkovich/Vicker-type geometries. While correc-

tion factors have already been proposed (Hay et al., 1999; Poon et al.,

2008; Xu, 2008), the majority of studies (with a few recent analytical

exceptions (Argatov and Sabina, 2014; Argatov et al., 2012) have con-

centrated in the positive Poisson’s ratio regime and have neglected an

exciting and developing class of materials: the auxetic systems. The

thermodynamic constrains on the materials elastic properties allow

for Poisson’s ratio of the material to move into the negative domain,

more specifically −1 ≤ ν ≤ 0.5. This leads to the counter-intuitive be-

havior, in which materials tend to expand in the lateral dimension

in response to stretching. This geometrically/kinematically-driven re-

sponse to loading leads to an increase in volume and thus materials

that fall into this category have been termed auxetic. Equivalently

the same materials will tend to reduce their volume when com-

pressed (thus miotic). Ever since the experimental reporting of such

a response by re-entrant structures polyurethane in 1987 by Lakes

(1987), many other systems have been found to exhibit similar defor-

mation patterns. Most of these systems fall into man-made or nat-

urally occurring microporous systems like polytetrafluoroethylene

(Lakes, 1987), microporous ultra high molecular weight polyethy-

lene and polypropylene (Alderson et al., 2000, 1994), various types

of rocks and crystals (Zouboulis et al., 2014), a-cristobalite (Grima

et al., 2005), zeolites (Gatt et al., 2008), various laminate compos-

ites (Milton, 1992), defected graphene (Grima et al., 2015), and many

others. For a more detailed exposition of this particular material be-

havior the reader is referred to the reviews of Lakes (1993), Yang et al.

(2004) and Greaves et al. (2011).

The finite element method is used in this paper to simulate the

conical indentation response of elastic materials with Poisson’s ratios

covering the whole thermodynamically possible range, −1 ≤ ν ≤ 0.5.

The aim of this particular study is twofold: on one side we aim to

quantify the increased indentation resistance reported in the liter-

ature when indenting auxetic materials and identify through com-

putational simulations the mechanisms that lead to this particular

response. On the other hand we aim to deal with the discrepancy

caused by the existing analytical solution when indenting auxetic

materials and extract correction factors that will eliminate any inac-

curacies and will correct the analytical solution for the entire possible

span of Poisson’s ratios.

2. Theoretical background

The main focus of contact mechanics is the determination of size

and exact shape of the contact area. Unlike classical mechanics prob-

lems, the contact zone is unknown so that areas where displacements

(in the contact region), and those where forces (free surface) are pre-

scribed are not known a priori. This renders the analysis intrinsically

non-linear, since the surface boundary conditions have to be formu-

lated under restrictions of a point z that is either situated in the con-

tact zone or in the stress-free area. The contact problem between a

rigid axisymmetric indenter and an infinite half-space is described by

the following set of equations, written in polar coordinates (ρ , ϕ, z):

div σ = 0 (6)

σ = F (ε) (7)

ε = 1

2

(∇u + ∇t u
)

(8)

P = −
∫ a

ρ=0

∫ 2π

θ=0

σzz(ρ,ϕ, 0)ρdρdϕ (9)

uz(ρ,ϕ, 0) = −h + f (ρ);ρ < α (10)

σρz(ρ,ϕ, 0) = 0;ρ > 0 (11)

σzz(ρ,ϕ, 0) = 0;ρ > a (12)

where P is the applied load, in direction z, f(ρ) defines the axi-

symmetric shape of the indenter, and a is the contact radius. Eq. (6)

is the static equilibrium condition, Eq. (7) provides the stress–strain

relation of the indented material (here linear isotropic elastic),

Eq. (8) links strain to displacements and the remaining relations

(Eqs. (9)–(12)) are the boundary conditions for the total load (Eq.

(9)), the vertical displacement in the contact region (Eq. (10)), the

zero shear stress on the surface (Eq. (11)) which includes the fric-

tionless contact condition and the stress-free boundary condition

outside the contact zone (Eq. (12)).

There are several ways of solving the above set of equations, the

more traditional one being the method developed by Lee and Radok

(1960), and further formalized by Sneddon (2010) and (1965) which

consists in performing on all problem equations two dimensional

Fourier transforms in the directions of the surface coordinates x and y.

In the case of axi-symmetry, this integral transform is called a Hankel

transform on the polar coordinates ρ and ϕ which are transformed

into a variable ϕ of dimension L−1. The area of contact is circular by

symmetry and its projected radius a is kept as an unknown. It turns

out that the equations written with a new set of non-physical coordi-

nate can be solved analytically in the transformed space. Finally the

integral transforms are performed backwards to return to the original

problem. Following this procedure, the expressions for h and P for an

isotropic half-space read:

h = α

∫ α

ρ=0

f ′(ρ)dρ√
a2 − ρ2

(13)

P = 2
E

1 − ν2

∫ α

ρ=0

ρ2 f ′(ρ)dρ√
a2 − ρ2

(14)
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