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a b s t r a c t

In theory, identification of material properties of microscopic materials, such as thin film or single crystal,

could be carried out with physical experimentation followed by simulation and optimization to fit the simu-

lation result to the experimental data. However, the optimization with a number of finite element simulations

tends to be computationally expensive. This paper proposes an identification methodology based on nanoin-

dentation that aims at achieving a small number of finite element simulations. The methodology is based

on the construction of a surrogate model using artificial neural-networks. A sampling scheme is proposed

to improve the quality of the surrogate model. In addition, the differential evolution algorithm is applied to

identify the material parameters that match the surrogate model with the experimental data. The proposed

methodology is demonstrated with the nanoindentation of an aluminum matrix in a die cast aluminum alloy.

The result indicates that the methodology has good computational efficiency and accuracy.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Contrasting to the conventional material development process,

the ongoing project Reverse 4D Materials Engineering aims at rapid

development of high-performance materials (Toda et al., 2014). The

objective of the project is to develop methods and tools that gener-

ate the optimum microstructure structure with a minimum compu-

tational effort. Such a challenge requires addressing reverse engineer-

ing problems and this paper is a first step towards that direction.

Determining material properties is crucial in the design of ma-

terials that are resistant to fatigue, wear, and other behaviors. Un-

fortunately, conventional mechanical methods are often destructive

and complex. As an alternative, nanoidentation is a widely recog-

nized technique that is relatively non-destructive and can be applied

to small specimens for use in the measurement of mechanical prop-

erties of both bulk materials and thin coatings (Haggag et al., 1996).
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Much research has been done on methods that extract mechani-

cal properties of materials from indentation tests. For example, Oliver

and Pharr proposed an analytical method to nanoindentation-data to

estimate hardness and elastic modulus (Oliver and Pharr, 1992). Dao

et al. (2001) proposed a reverse algorithm based on explicit equations

that enables the extraction of elasto-plastic properties. In the same

vein, Cao and Lu (2004) extended the work of Dao et al. to spherical

indentation. However, such methods are limited to certain parame-

ters and materials.

Several authors have developed inverse algorithms based on fi-

nite element (FE) simulations to extract material properties. Some

of these algorithms rely on methods that reduce the number of un-

knowns. For example, Cheng and Zheng (2004), Ma et al. (2012) and

Heinrich et al. (2009) use dimensional analysis for this purpose.

Surrogate modeling has been used as an approach to predict

FE simulations. For example, Heinrich et al. (2009) proposed the

method of Kriging to predict material properties from nanoindenta-

tion curves as an approach of curve fitting between experimental and

numerical data. Other researchers used Artificial Neural Networks

(ANNs) in which the inputs to the network are defined by the load–

displacement response data and the desired outputs are the material
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parameters (Huber et al., 2000; Huber and Tsakmakis, 1999; Huber

and Tsakmakis, 2004). In their work, response curves are generated

by finite element simulations for various parameter combinations

in an attempt to match experimental data. However, these methods

rely heavily on the finite element simulations which are expensive

in terms of computation time. Furthermore, it becomes impractical

when the number of parameters increases, since a large dimensional

problem require a large number of simulations.

In general, surrogate models are constructed using data drawn

from rigourous models (e.g. high-fidelity models), and provide a fast

approximation of the original model, making optimization studies

more efficient. Surrogate models have been successfully used in the

design of aerospace devices (Queipo et al., 2005), heat transfer de-

vices (Qian et al., 2006), chemical process optimization (Caballero

and Grossmann, 2008), and combustion engine design (Jakobsson et

al., 2010).

In the field of material science and engineering, Jin et al. (2012)

used surrogate models combined with sharp indentation, dimen-

sional analysis, and an energy method for calculating residual

stress. The surrogate model was constructed as an Artificial Neural

Network (ANN) that was trained with 240 finite element simu-

lations, which were validated with other 40 simulations chosen

randomly.

Haj-Ali et al. (2008) developed ANN models trained with FE

simulations for reproducing nanoindentation curves. However, only

the loading part of the curve was used to generate the ANN

models.

Theoretically, the application of an optimization technique

directly to FE simulations can identify the material parameters.

However, a typical optimization would require thousands of function

evaluations, which would make this approach impractical. The

problem is also complex because the nonlinearity from plasticity and

large deformation adds non-convexity to the optimization problem.

To cope with these issues, this paper proposes a combination of a

sampling scheme, surrogate modeling, and a global optimization

approach.

The rest of this paper is organized as follows. Section 2 de-

scribes problem statement. The proposed methodology is presented

in Section 3. Then, Section 4 discusses a case study to evaluate

the proposed approach. Finally, Section 5 provides discussion and

conclusions.

2. Problem statement

The proposed approach employs surrogate modeling and a sam-

pling method as the means to reduce the number of FE simulations.

Specifically, we focus on the estimation of elastic and plastic parame-

ters from load–displacement curves obtained from nanoindentation

experiments. Therefore, the problem is formulated as the minimiza-

tion of the objective function given in Eq. (1), which is composed of

two parts:

1. the error between the experimental load–displacement curve and

the curve estimated by the surrogate model (first term in Eq. (1));

and

2. the difference between the areas under the experimental and es-

timated curves (second term in Eq. (1)).

Minimize γ1I
f̃ (p̃) + γ2

∣∣∣∣∫ x f inal

x0

f (x, p)dx −
∫ x f inal

x0

f̃ (x, p̃ )dx

∣∣∣∣
(1)

Subject to:

g(x, p̃) = 0 (2)
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Fig. 1. Indentation load–displacement curve

where p̃ is the decision variable which represents a vector of param-

eters whose values are known a priori; p is a vector of mechanical

parameters which are intrinsically present in the material but whose

range and values are initially unknown; f (x j, p) is the experimen-

tal indentation-load evaluated at depth (displacement) x j; f̃ (x j, p ) is

the indentation-load calculated by the surrogate model at depth x j; x

is the depth of the indenter in the material (the known independent

variable); x0 is the initial value of x, and xfinal is its last value; I
f̃
(p̃)

is the root mean square error between the experimental curve and

the curve estimated by the surrogate model, as calculated by Eq. (11);

and γ 1and γ 2 are weight parameters. Finally, the constraint g(x, p)

guarantees that the experimental and predicted responses overlap.

To convert the above constrained-problem into an unconstrained

optimization problem, Eq. (2) is added as a penalty function to Eq. (1),

resulting in:

Minimize γ1I
f̃ (p̃) + γ2

∣∣∣∣∫ x f inal

x0

f (x, p)dx −
∫ x f inal

x0

f̃ (x, p̃ )dx

∣∣∣∣
+ γ3 h(g(x, p)) (3)

where γ 3 is an additional weight parameter and h(g(x, p)) is the

penalty function.

If g(x, p) represents the requirement to make the curves coincide

at the point of maximum depth then h(g(x, p)) can be expressed as:

h(g(x, p)) = | f (x, p)|x=xmax
− | f̃ (x, p̃)|x=xmax

(4)

where xmax is the maximum depth of the indenter.

The problem of inferring the parameter vector p from the load–

displacement response curves is ill-posed because of the existence

of a large number of solutions. To solve this, a global optimization

algorithm is applied.

In order to facilitate the quantification of the differences between

the experimental data and the simulation, the experimental data is

processed by decomposing the original data set into its loading and

unloading segments (Fig. 1). Then, in order to obtain continuous and



Download English Version:

https://daneshyari.com/en/article/277208

Download Persian Version:

https://daneshyari.com/article/277208

Daneshyari.com

https://daneshyari.com/en/article/277208
https://daneshyari.com/article/277208
https://daneshyari.com

