
International Journal of Solids and Structures 81 (2016) 262–273

Contents lists available at ScienceDirect

International Journal of Solids and Structures

journal homepage: www.elsevier.com/locate/ijsolstr

Propagation of non-axisymmetric waves in an infinite soft electroactive

hollow cylinder under uniform biasing fields

Y.P. Su a, H.M. Wang a, C.L. Zhang a, W.Q. Chen a,b,c,d,∗

a Department of Engineering Mechanics, Zhejiang University, Hangzhou 310027, China
b State Key Lab of CAD & CG, Zhejiang University, Hangzhou 310058, China
c Soft Matter Research Center (SMRC), Zhejiang University, Hangzhou 310027, China
d Key Laboratory of Soft Machines and Smart Devices of Zhejiang Province, Zhejiang University, Hangzhou 310027, China

a r t i c l e i n f o

Article history:

Received 8 December 2014

Revised 23 November 2015

Available online 12 December 2015

Keywords:

Electroelasticity

Hollow cylinder

Biasing field

Linear incremental theory

Non-axisymmetric wave

a b s t r a c t

Based on Dorfmann and Ogden’s nonlinear theory of electroelasticity and the associated linear incremental

theory, the non-axisymmetric wave propagation in an infinite incompressible soft electroactive hollow cylin-

der under biasing fields is investigated. The biasing fields are uniform, including an axial pre-stretch and a

radial stretch in the plane perpendicular to the axis of the cylinder as well as an axial electric displacement.

Such biasing fields make the originally isotropic electroactive material behave during its incremental mo-

tion like a conventional transversely isotropic piezoelectric material, hence greatly facilitating the following

analysis. The three-dimensional equations of wave motion in cylindrical coordinates are derived and exactly

solved by introducing three displacement functions. The exact solution is expressed in terms of Bessel func-

tions, and explicit frequency equations are presented in different cases. For a prototype nonlinear model of

electroactive material, numerical results are given and discussed. It is found that the initial biasing fields as

well as the geometrical parameters of the hollow cylinder have significant influences on the wave propaga-

tion characteristics.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Soft electroactive materials are smart materials, which may be

produced by embedding electroactive particles in a rubber-like ma-

trix such as silica gel and silicone rubber (Bossis et al., 2001). They

have attracted considerable interests and are widely used to develop

high-performance mechanical devices such as actuators and artificial

muscles because of their rapid response and large deformation under

electrical stimulus (Anderson et al., 2012; Henann et al., 2013).

Nonlinear analysis of soft electroactive materials or structures is

quite complex due to the strong nonlinearity as well as the elec-

tromechanical coupling. The formulation of the general nonlinear

theory of electroelasticity dates back to the 1950s. Toupin (1956,

1963) first established the theories governing the static and dy-

namic responses of elastic dielectrics. Tiersten (1971) later extended

Toupin’s study to the case with thermal effect. The nonlinear inter-

actions between the mechanical and electromagnetic fields are well

expounded in the books by Landau and Lifshitz (1960), Nelson (1979),

and Maugin (1988), to name a few. Theoretical development of the
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nonlinear theories of electroelasticity has been revived in the recent

decade (Dorfmann and Ogden, 2005, 2006; McMeeking and Landis,

2005; Mockensturm and Goulbourne, 2006; Bustamante et al., 2009;

Suo, 2010) since new soft electroactive materials have been produced,

indicating a very tempting prospect of applications.

The study on waves in electroactive materials not only presents

significant theoretical interests but also is of specific practical im-

portance. Chai and Wu (1996) applied the Lothe–Barnett’s integral

formalism to the study of surface waves in a prestressed piezoelec-

tric material. The initial stress effect on the reflection coefficients

of waves in a prestressed piezoelectric half-space was discussed in

a recent paper by Singh (2010). Based on the nonlinear framework

for electroelasticity (Dorfmann and & Ogden, 2005, 2006) and

the associated linear incremental theory (Dorfmann and & Ogden,

2010b), Dorfmann and Ogden (2010a) analyzed the plane waves

propagating in a homogeneously deformed electroactive material

and the surface waves in a homogeneously deformed half-space

of incompressible electroactive material. Axisymmetric waves in

pre-stretched incompressible soft electroactive cylinders were ex-

amined in an exact manner by Chen and Dai (2012), also based on the

theoretical framework suggested by Dorfmann and Ogden. In a more

recent paper, Su and Chen (2014) extended Chen and Dai’s work to a

cylindrical shell and further considered the influence of the electric

field exterior to the shell. Almost simultaneously, Shmuel et al. (2012)
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showed a strong effect of the biasing fields on the propagation of

Rayleigh–Lamb waves in dielectric layers. Axisymmetric waves in

dielectric elastomer tubes under biasing fields were also studied by

Shmuel and deBotton (2013), where the biasing field is produced by

applying a voltage difference between the inner and outer surfaces of

the shell. This is quite different from that in Chen and Dai (2012) and

Su and Chen (2014), which actually results in nonuniform biasing

fields, and makes it impossible to obtain exact solutions.

In this paper, we aim at developing an exact analysis of non-

axisymmetric waves in an infinite soft electroactive hollow cylinder

subjected to uniform pre-stretch and/or biasing electric field. This is

an extension of our previous works mentioned above, where only the

simple axisymmetric case was considered. For the purpose of anal-

ysis, the theories of nonlinear electroelasticity and linear incremen-

tal field proposed by Dorfmann and Ogden (2005, 2006, 2010b) are

briefly reviewed. As in Chen and Dai (2012), uniform biasing fields

in cylindrical coordinates are assumed here to enable an exact analy-

sis. The three-dimensional equations governing the small-amplitude

non-axisymmetric waves in incompressible soft electroactive hollow

cylinders under uniform biasing fields are simplified and decoupled

by introducing three displacement potentials. An exact solution is

then derived in terms of Bessel functions. Numerical examples are

finally presented to show the effects of biasing fields and other pa-

rameters on the wave propagation behavior.

2. Basic formulations

2.1. Nonlinear theory of electroelasticity

Consider an incompressible continuous electroelastic body. We

denote the undeformed, stress-free configuration by Br, and its

boundary by ∂Br, with N being the outward unit normal. Any mate-

rial particle, say X, is labeled by a position vector X. Let Bt denote the

corresponding deformed configuration with ∂Bt the boundary and n

the outward unit normal. The deformation is described by the map-

ping x = χ(X, t) where χ is a continuous and twice differentiable

vector function. The deformation gradient is defined by F = Gradχ
with the Cartesian components given by Fiα = ∂xi/∂Xα . b = FFT and

c = FT F are the left and right Cauchy–Green tensors respectively. The

relations between the infinitesimal undeformed surface element dA

and volume element dV and those deformed ones are specified by

nda = JF−TNdA and dv = JdV respectively, where J = |F| is the deter-

minant of the deformation gradient F, also known as the volume ratio.

We have J = 1 for incompressible materials.

Under the ‘quasi-electrostatic approximation’, the appropriate

specializations of Maxwell’s equations in the absence of free body

charges and currents are

Curl El = 0, Div Dl = 0, (1)

where El = FT E and Dl = F−1D are the Lagrangian counterparts of the

electric field vector E and electric displacement vector D, respectively.

Curl and Div are the curl and divergence operators defined in Br, while

curl and div will be used for the corresponding operators in Bt. The su-

perscript T denotes the matrix transpose. In the vacuum outside the

material, the electric field vector E∗ and electric displacement vector

D∗ are related by

D∗ = ε0E∗, (2)

where the constant ɛ0 is the permittivity of vacuum. Obviously, we

have

curl E∗ = 0, div D∗ = 0. (3)

The Maxwell stress in the vacuum is defined by

τ ∗ = ε0

[
E∗ ⊗ E∗ − 1

2
(E∗ · E∗)I

]
. (4)

In the absence of surface charges, the jump conditions across the

boundary read as

(E − E∗) × n = 0, (D − D∗) · n = 0. (5)

The equations of equilibrium, in the absence of body forces, are

Div T = 0, (6)

where T = F−1τ = ∂�/∂F − pF−1 is the nominal stress tensor, with τ
being the total Cauchy stress tensor, �(F, Dl) is an amended energy

function defined per unit volume in the reference configuration, and

p is a Lagrange multiplier associated with the incompressibility con-

straint. p is identified as a hydrostatic pressure in Holzapfel (2000)

and Dorfmann and Ogden (2014).

The mechanical boundary condition is given by

τn = ta + te, (7)

here ta is the applied mechanical traction per unit area of ∂Bt, and

te = τ ∗n is the contribution to the traction due to the electric field

exterior to the body. Note that te is an unknown quantity, to be deter-

mined from the governing equations and the jump conditions.

2.2. Linear theory for incremental field

Following the formulation of Dorfmann and Ogden (2010b), we

superimpose an incremental deformation ẋ(X, t) along with an in-

crement in the electric displacement Ḋl upon the deformed configu-

ration. The superposed dot is used in this paper to denote incremen-

tal quantities. The incremental forms of the governing Eqs. (1) and (6)

are

curl Ėl0 = 0, div Ḋl0 = 0, (8)

div Ṫ0 = ρu,tt , (9)

where u(x, t) = u(χ(X, t), t) = ẋ(X, t) should be noticed, Ṫ0 =
FṪ, Ėl0 = F−TĖl , Ḋl0 = FḊl are the ‘push forward’ versions of Ṫ, Ėl , Ḋl

respectively. The linear incremental constitutive equations for an

isotropic electroactive material are

Ṫ0 = A0H + �0Ḋl0 + pH − ṗI, Ėl0 = �T
0H + K0Ḋl0, (10)

where H = grad u is the displacement gradient. The components of

the instantaneous electroelastic moduli tensors in Eq. (10) are

A0piq j = FpαFqβAαiβ j = A0q jpi, 
0piq = FpαF−1
βq


αiβ = 
0ipq,

K0i j = F−1
αi

F−1
β j

Kαβ = K0 ji, (11)

with

Aαiβ j = ∂2�

∂Fiα∂Fjβ
, 
αiβ = ∂2�

∂Fiα∂Dlβ
, Kαβ = ∂2�

∂Dlα∂Dlβ
. (12)

Obviously, they depend on the applied biasing fields. Thus, the bias-

ing fields can be a useful means to adjust the instantaneous material

properties, which in turn have a profound effect on the incremental

fields.

Similarly, the incremental forms of Maxwell’s equations outside

the material are

curl Ė∗ = 0, div Ḋ∗ = 0. (13)

The incremental fields Ė∗ and Ḋ∗ are related by Ḋ∗ = ε0Ė∗. Accord-

ingly, the incremental forms of the boundary conditions (5) and (7)

are

(Ėl0 − Ė∗ − HTE∗) × n = 0, (Ḋl0 + HD∗ − Ḋ∗) · n = 0, (14)

ṪT
0
n = ṫA0 + τ̇ ∗n − τ ∗HTn, (15)

where ṫA0da = ṫAdA, with tA being the applied mechanical traction

per unit area of ∂Br, and τ̇ ∗ is the incremental Maxwell stress given

by

τ̇ ∗ = ε0[Ė∗ ⊗ E∗ + E∗ ⊗ Ė∗ − (E∗ · Ė∗)I]. (16)
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