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a b s t r a c t

Nonlinear dynamics of plates synthesized using topology optimization and undergoing transverse vibrations

with 1:2 internal resonances are presented. The plates are assumed to be made of hyperelastic materials;

specifically two particular material models, namely, the neo-Hookean and Mooney–Rivlin material model

are considered. A finite element approximation is first used in conjunction with novel topology optimization

techniques to develop linearized candidate plate structures that have their lowest two natural frequencies in

the ratio of 1:2. The plate structures are assumed to follow thin plate theory Kirchoff assumptions. The nonlin-

ear dynamic response of the synthesized structures is then developed using modal superposition, and forced

response to base excitations is analyzed to study the effects of material and geometric nonlinearities on non-

linear plate vibrations. The geometric nonlinearities introduced are through the assumptions of finite strains

while the material nonlinearities arise due to nonlinear stress–strain or constitutive relationships for hyper-

elastic material models. Results are also compared with those obtained using von Karman and Novozhilov

approximations for nonlinear plate vibrations. First the results are developed with the assumption that the

materials are incompressible, and then this requirement is relaxed to include compressible materials as well.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

The development of bio-mimetic sensors and actuators has at-

tracted much attention in recent years. Concurrently and indeed,

driven by the same goals, researchers have tried to use new materi-

als, usually hyperelastic (Park et al., 2010) or electrostrictive (Pelrine

et al., 2000), to build micro- and meso-scale devices. While gener-

ally not seen as frequently as beam-type elements in MEMS devices,

plate structures are common in many such emerging applications in-

cluding microjets (Oates and Liu, 2009) and energy-harvesting de-

vices which can use ambient vibrations to produce electrical energy

(Czech et al., 2010). References Pelrine et al. (2000) and Richards and

Odegard (2010) describe several advantages of hyperelastic materi-

als such as low cost, weight, ability to withstand large strains and

ease of manufacturing in various shapes and configurations. Owing

to such advantages, diverse applications such as micro-fluidic pumps

(Xia et al., 2005), high-speed micro-actuators (Pelrine et al., 2000)

and “soft” robotic systems (Petralia and Wood, 2010) have been fab-

ricated using hyperelastic polymers.
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Nonlinear response of elastic structures to resonant excitations

has been investigated for quite some time, e.g. see Sathyamoorthy

(1998) and Lacarbonara (2013). More specifically, “internal reso-

nance” in a structure is possible when the natural frequencies of two

or more modes are commensurable or nearly commensurable. In the

presence of nonlinearities and a sufficient level of excitation, these

frequency relations can lead to energy transfer between modes; for

example if a system has quadratic nonlinearities and has two of its

linear modal frequencies in the ratio of 1:2, it can exhibit 1:2 internal

resonance if the excitation amplitude is above some threshold (Bajaj

et al., 1994; Balachandran and Nayfeh, 1990; Wang and Bajaj, 2010).

Internal resonance on its own has also been proposed as a mechanism

for resonant MEMS based sensing (Vyas et al., 2009; 2008).

The mechanisms of generating quadratic nonlinearities in the

structure can be roughly grouped under two categories, namely, geo-

metric and material. Geometric nonlinearities can be introduced due

to large deformations, non-flat equilibrium conditions (such as for a

curved arch Tien et al., 1994) or structural asymmetry (Thomas et al.,

2005). Material nonlinearities are caused by the structures having a

non-linear stress–strain relationship, or in other words, the coupling

between forcing and displacements is non-linear which might lead to

situations where doubling of forcing amplitude may not lead to dou-

bling of structural displacement. In this work, both geometric nonlin-

earities by virtue of large deformations, and material nonlinearities

by virtue of a nonlinear hyperelastic constitutive law contribute to
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generation of quadratic nonlinearities in the structures to make 1:2

internal resonance possible.

The aim of this work is to present a methodology for design and

analysis for nonlinear dynamic response of resonators incorporat-

ing hyperelastic materials and undergoing 1:2 internal resonance in

large amplitude transverse vibrations. The resonators are essentially

thin rectangular plates (with or without cutouts) made of isotropic

hyperelastic materials. The resonance condition of having the low-

est two natural frequencies close to the integer ratio of 2 is achieved

by appropriate linear design of the structure obtained using a finite

element analysis coupled to topology optimization. Once the linear

design is complete, the mode shapes obtained from the linear fi-

nite element analysis can be used to construct a two-mode nonlinear

model by expressing the displacements of the nonlinear structure in

the 3-D space as a linear superposition of the two modes. This model

is then used to develop the nonlinear dynamic response of the can-

didate structures and to analyze the occurrence of 1:2 internal reso-

nances. Only a two-mode model is initially considered assuming that

energy transfer occurs only between these two modes. More specifi-

cally, the second mode is directly excited using external resonant ex-

citation in the transverse direction and it is hoped that it in turn ex-

cites the first mode due to the nonlinearities present in the structure.

Topology optimization has been an often used technique for struc-

tural optimization (Bendsoe and Sigmund, 2004) including optimiza-

tion of resonators for their linear dynamic response (He et al., 2011).

The application of topology optimization in the area of nonlinear dy-

namics is still in its infancy. This work explores the use of topol-

ogy optimization techniques to synthesize structures for internal res-

onances by making a choice of an appropriate objective function.

The use of hyperelastic material models such as the Mooney–Rivlin

model and finite strains naturally introduce nonlinearities in the fi-

nal equations of motion of these resonators. Topology optimization

is done here using a linear finite element approximation making use

of Kirchoff plate elements with the hyperelastic structure linearized

around its flat equilibrium configuration (Finney and Kumar, 1988;

Gruttmann and Taylor, 1992). The two specific topology optimiza-

tion procedures considered in this work are the method of moving

asymptotes (MMA) (Svanberg, 1987) and a simple iterative procedure

introduced recently by the authors (Tripathi and Bajaj, 2014b). Both

methods yield valid candidate structures. For constructing a more

complete picture of the structure’s deformation, it is important to

have in-plane or membrane displacements independent of the trans-

verse displacements which are not provided by the Kirchoff plate el-

ements; hence, once the topology optimization has been completed,

the final candidate structure is re-analyzed using four node shell el-

ements to get independent in-plane deformation fields as well as to

re-verify the satisfaction of resonance condition of the structure.

As for the nonlinear model development, while in general, the

nonlinear response of a structure may consist of several modes, it is

expected that in the presence of damping, modes with neither a di-

rect excitation nor an internal resonance, will have their amplitudes

diminish over time (Nayfeh, 2000). Therefore, a two-mode model

may provide a fairly accurate representation of the system’s nonlin-

ear response. This two-mode approximation of displacements is then

combined with the system Lagrangian (kinetic and potential ener-

gies) to develop a reduced-order model of the structure in which the

principal unknowns are the two modal coefficients and their time

derivatives. This Lagrangian along with Euler–Lagrange conditions

gives the equations for the slow time evolution of amplitudes (Bajaj

et al., 1994; Nayfeh, 2000) of the interacting modes. These slow time

amplitude equations can be solved for obtaining the final nonlinear

response of the structure.

Note that the system Lagrangian consists of kinetic energy of the

velocity fields in the two modes and strain energies associated with

the displacement fields. The strain energy forms for the hyperelastic

structures depend specifically on the material constitutive laws, e.g.,

Mooney–Rivlin potential, and on the geometries of deformation, e.g.,

the von Karman, Novozhilov or some other strain measures associ-

ated with moderately thick or thin plate theories. Both these cases

are considered in this work and the results are compared. The neo-

Hookean material model is also considered for obtaining the nonlin-

ear response of the system. Finally, some results are also presented

for materials allowing for compressibility effects.

The paper is organized as follows: In Section 2, namely, linear

structure synthesis, the topology optimization methods and the lin-

ear finite element formulation used to obtain candidate structures for

internal resonance are described. A Matlab based finite element pro-

gram is used with some results verified by the commercial software

package ANSYSTM (ANSYS, 2014). In Section 3, the development of the

nonlinear dynamic response of the structures obtained in Section 2 is

presented. Different material models as well as geometry of defor-

mation and effect of compressibility are considered in the context of

the two-mode models. A case of higher mode models is also intro-

duced and at least in the specific case, the higher modes are shown

not to contribute to steady state response. Finally in Section 4, some

conclusions are drawn along with discussion of the results.

2. Linear structure synthesis

The aim of the linear synthesis process is to obtain topologies of

plates which can exhibit 1:2 internal resonances while undergoing

nonlinear transverse vibrations. As mentioned earlier in the intro-

duction, topology optimization techniques in conjunction with linear

finite element analysis were used to obtain the candidate structures.

For the purpose of optimization, the candidate structures were mod-

eled with four-node thin-plate elements with three degrees of free-

dom per node (Cook et al., 2004). More specifically, the three degrees

of freedom are the transverse displacement and the two rotations

around the other two axes. The major purpose of the linear structure

synthesis is to obtain a structure which has its lowest two natural fre-

quencies in the ratio of 1:2. Note that the choice of lowest two natural

frequencies is really no restriction as the same approach can be used

for synthesis of the structure with any two chosen natural frequen-

cies satisfying the desired condition. Analytically, this requirement

can be specified by the relation:

ω2

ω1

= 2, (1)

where ω1 and ω2 are the first and the second natural frequency of the

structure, respectively.

Based on this requirement, a topology optimization problem can

be formulated whose solution would lead to structures which can ex-

hibit 1:2 internal resonance in the nonlinear behavior. The objective

function of this optimization problem can be stated as:

minimize

c(ω) =
(
ξ − ω2

ω1

)2

. (2)

Note that this objective function does not limit the natural fre-

quencies to a specific range, which may be desired in some appli-

cations. A constraint can be then imposed to specify the frequency

range, thereby resulting in a constrained optimization problem. An

example of such a case is the recent work of the present authors deal-

ing with beam-like structures (Tripathi and Bajaj, 2014a). Also, it must

be added that the minimization of the objective function given in

Eq. (2) leads to an optimal structure which has its lowest two

natural frequencies in the specified ratio 2 for 1:2 internal reso-

nance. As mentioned in the previous section, the system needs to

have quadratic nonlinearities and the frequency condition given by

Eq. (1) to exhibit internal resonance. The linear synthesis method us-

ing topology optimization only provides the frequency ratio aspect

of these requirements and not the existence of nonlinearity which, as
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