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a b s t r a c t

Microstructure evolution in single crystal and polycrystal shape memory alloys under uniaxial tension and

compression is investigated using the finite element method. To determine stress-strain diagrams and evo-

lution of martensitic microstructure during external loading, a micromechanics based thermo-mechanical

material model is used. The results reveal the significant difference between the local and global material be-

havior when defects are present. It is shown that defects act as nucleation sites and result in transformation

localization, which in turn causes a sudden drop in the stress-strain diagram followed by a stress plateau.

Moreover, it is found that some regions undergo reverse transformation although the elastic moduli of the

phases are equal and the loading is monotonic. Increase in athermal friction, which is the resistance to in-

terface propagation, is found to delay the phase transformation and different magnitudes of hysteresis are

obtained at different friction values. The model predicts the tension-compression asymmetry observed in

shape memory alloys. The simulation results are in qualitative agreement with several experimental studies.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Martensitic phase transformations (PTs) are observed in several

materials such as metals, ceramics, alloys and biological systems.

The main deformation mechanism of shape memory alloys (SMA)

is based on martensitic PTs. Physical and mechanical properties of

the material is determined by the formed microstructure. SMAs

have complex and non-linear stress-strain behavior under thermo-

mechanical loadings. They exhibit unique material behavior such as

shape memory effect and superelasticity. An understanding of these

properties and the governing deformation mechanism is important

for material design and industrial applications.

There are various phenomenological (Abeyaratne and Kim, 1997;

Arghavani et al., 2010; Auricchio et al., 1997; Bo and Lagoudas, 1999;

Brinson, 1993; Lagoudas et al., 2012; Lexcellent et al., 2000; Liang and

Rogers, 1990; Panico and Brinson, 2007; Saleeb et al., 2011; Zaki and

Moumni, 2007) and micromechanics based (Gao et al., 2000; Heinen

et al., 2009; Levitas and Ozsoy, 2009a, 2009b; Lexcellent et al., 1996;

Pan et al., 2007; Patoor et al., 1996; Thamburaja and Anand, 2001;
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Thamburaja et al., 2009; Yu et al., 2013) models developed for the de-

scription of the behavior of materials that undergo martensitic phase

transformations. The phenomenological models aim to determine the

macroscopic behavior of SMA using homogenization techniques. In

order to fit the material behavior observed in experiments to the cal-

culations, they use several parameters that are measurable macro-

scopically in these experiments. On the other hand, the microstruc-

ture of the SMA, which is paid less importance in phenomenological

models, is used to determine both the microscopic and macroscopic

behavior of the SMAs in micromechanics based models. The macro-

scopic behavior of the material is usually captured by using finite ele-

ment method (FEM) for a finite sample. Microstructure evolution can

be determined by FEM based on extremum principles of thermody-

namics for elastic and elastoplastic materials (Idesman et al., 1999;

Levitas et al., 1998; Reisner et al., 1998) or kinetic extremum princi-

ples (Idesman et al., 2000; Levitas, 2000a; 2000b).

At the nanoscale, phase field approach is used to model multivari-

ant microstructure evolution in a single crystal and polycrystal ma-

terials (Artemev et al., 2001; Jin et al., 2001) which is generalized in

dynamic problems (Cho et al., 2012; Idesman et al., 2008) and large

strains (Levin et al., 2013; Levitas, 2013; Levitas et al., 2013). Due to

necessity to resolve few nanometer size interface, this approach is

limited to nanosize samples. Also, athermal threshold was missing

in the phase field approach, which was resolved in Levitas and Lee

(2007), Levitas et al. (2010).
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Recently, we developed a micromechanics based model for the

description of martensitic PT at small and large deformations and

derived the universal (i.e. independent of constitutive equations)

thermodynamic driving force for interface orientation (Levitas and

Ozsoy, 2009a, 2009b; Levitas et al., 2007). Considering a repre-

sentative volume element (RVE) consisting of austenite and two

martensitic variants, each separated by plane interfaces, the com-

plete system of equations that describes the evolution of martensitic

microstructure is derived. The model incorporates athermal interface

friction, which is the resistance to interface motion caused by the

interactions between the corresponding interface and the long-range

stress fields of defects (point defects, dislocations, grain and subgrain

boundaries), the Peierls barrier and acoustic emission. The value of

this parameter varies by preliminary plastic deformation or ther-

momechanical treatment, and can be determined by cyclic loading

experiments. We presented several examples of microstructure

evolution in the RVE (local material behavior) under complex loading

with different athermal frictions. A small artificial martensitic nu-

cleus is assumed to be present in the RVE to calculate the equilibrium

crystallographic parameters for stress- and temperature-induced

transformations. Macroscopic stress for the RVE is found to decrease

(strain softening) monotonically during a direct PT with an increase

in applied strain under uniaxial tension which is due to the internal

stresses caused by incompatible transformation strain. Although

this is valid for local material response, such material instability

causes localization of transformation strain in the solution of a

boundary-value problem for bulk material and results in formation

of discrete martensitic microstructure (Levitas et al., 2004; Idesman

et al., 2005). Thus, the stress-strain diagram for a finite sample which

can either be a single crystal or polycrystal would be different than

the local one. In addition, when the material is a single crystal, the

presence of nucleation sites results in totally different behavior of

the material since such real nuclei create internal stresses in the

surrounding matrix, which in turn yields more material to transform

into martensite instantly. Therefore, these constitutive equations

should be used for a finite sample to determine the macroscopic

behavior of the material, which is the motivation of the current

study.

In this paper, we investigate the evolution of martensitic mi-

crostructure in single crystal and polycrystal finite samples of SMA

under uniaxial load using the finite element method, which is miss-

ing in our previous studies (Levitas and Ozsoy, 2009a, 2009b; Levitas

et al., 2007). A numerical scheme is implemented into the finite ele-

ment analysis software ABAQUS via user-defined material subroutine

(UMAT). The following aspects of the stress-induced martensitic PT

in elastic materials are studied:

(a) the effect of crystal orientation on the material behavior of sin-

gle crystal SMA,

(b) the propagation of phase transformation in an austenitic SMA

which has several martensitic nuclei,

(c) the material behavior of polycrystal SMA,

(d) the effect of athermal friction on the material behavior and

hysteresis.

The paper is organized as follows: Section 2 describes the ther-

momechanical model that we used in our calculations. The model

incorporates driving forces for both interface propagation and rota-

tion based on a RVE that consists of a parent phase (austenite) and a

product phase (fine mixture of two martensitic variants). In Section 3,

the finite element model of PT for single crystal and polycrystal SMA

in elastic range is described and explanation for solution of the con-

stitutive equations is presented. Several simulation results for single

and polycrystal plates with or without nucleation sites are also given

in this section.

Fig. 1. Cubic representative volume element V used in the model. RVE consists of

austenite phase (A) and a fine mixture of two martensitic variants (M1, M2). Vectors

a and a1 represent the jumps in the strain across the A–M interface and M1–M2 in-

terfaces; n and n1 are the normal vectors to the interfaces between A-M interface and

M1–M2 interfaces, respectively.

2. Description of the model

A cubic RVE of volume V consisting of austenite and fine mixture

of two martensitic variants, as shown in Fig. 1, is considered in

the model (Levitas and Ozsoy, 2009a, 2009b; Levitas et al., 2007).

The letters and subscripts A, M, 1 and 2 represent austenite,

martensite and first and second martensitic variants, respectively,

c represents the volume fraction of the corresponding phase or

martensitic variant. The jump in the strain across the A–M interface

and M1–M2 interfaces are designated by a and a1, respectively.

All interfaces between A–M and martensitic variants (M1–M2) are

planes and parallel to each other. The position of the A–M interface

is determined by the normal vector n to the A–M interface and

the volume fraction of A, cA. Similarly, the normal vector n1 to the in-

terface between martensitic variants and the volume fraction of one

of the variants determine the geometry of the martensitic mixture.

As the position of these interfaces change, phase transformation

occurs from one phase to the other. The main assumption is that

stresses and all strains (total, elastic and transformational) are homo-

geneous in each phase and martensitic variant. Let the strain tensor

ε averaged over the volume V is prescribed as a function of time and

the orientation of the crystal lattice of A, transformation strains εti

for all symmetry-related martensitic variants, and the elastic proper-

ties of single crystals of A and M are given. In this problem, the two

M variants among all possible in the system, the evolution of strains

and stresses in A and each M variant, the stress σ averaged over the

volume V, and the evolution of all microstructural parameters (n, n1,

cA, and c1) have to be found. These are all determined by the system

of equations given below. Although the model developed in Levitas

and Ozsoy (2009a, 2009b) has several different and sophisticated

versions, we use the most basic one for simplicity and computational

efficiency.

Homogenization: A simple homogenization rule based on the vol-

ume fractions is considered as given in Eqs. (1) and (2) where the

relationship between volume fractions are given in Eq. (3). Here, σ
and ε are the stress and strain tensors averaged over the RVE and

σM and εM are the ones averaged over the martensitic volume in the

RVE.

ε = c1ε1 + c2ε2 + cAεA; εM = c1

cM

ε1 + c2

cM

ε2, (1)

σ = c1σ1 + c2σ2 + cAσA; σM = c1

cM

σ1 + c2

cM

σ2. (2)

cA + cM = 1, cM = c1 + c2, (3)

Kinematic decomposition: In Eq. (4), the strain is decomposed

into its elastic and transformational parts, represented by the

subscripts e and t, respectively. Note that εA does not have a
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