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a b s t r a c t

Hyperelastic structures usually undergo large deformations and thus may be subject to deformation-

dependent contact supports. This paper presents an effective topology optimization methodology for the

compliance-minimization design of hyperelastic structures with frictionless contact supports. In the op-

timization model, the strain-energy function of hyperelastic material is represented by an artificial pe-

nalization model, and the contact boundary conditions are modeled with hypothetical nonlinear springs.

The additive hyperelasticity technique is employed for circumventing the local buckling instability exhib-

ited by low-density elements. In conjunction with the adjoint variable sensitivity analysis, the nonlinear

topology optimization problem is solved by a gradient-based mathematical programming algorithm. Nu-

merical examples are given to show the importance of considering contact supports and to demonstrate

the applicability of the proposed method.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Hyperelastic materials, such as rubber-like materials and some

polymers, have been applied in a wide variety of practical indus-

trial applications. These materials usually exhibit a strongly nonlin-

ear stress-strain relation and can experience very large reversible

strains. This particular behavior of hyperelastic materials has at-

tracted considerable interests in the study of accurate hyperelastic

constitutive modeling (Martins et al., 2006) and structural design

problems (Choi and Duan, 2000; Jarraya et al., 2014).

As a powerful tool for the conceptual design of products, topol-

ogy optimization has become the most active research field in

structural and multidisciplinary optimization during the past two

decades (Sigmund and Maute, 2013; Deaton and Grandhi, 2014).

For hyperelastic structures, there have been a number of works fo-

cusing on the optimal material distribution problem using topology

optimization techniques incorporating the nonlinear finite element

analysis. Bruns and Tortorelli (2001) investigated the topology

optimization problem of hyperelastic structures and addressed the

effects of geometrically and materially elastic nonlinearities on

topology design. Lee and Youn (2004) developed a topology opti-

mization method for the design of rubber vibration isolators. The

hyperelastic constitutive model and the viscoelastic model are ap-

plied in the the static and dynamic analysis of rubber, respectively.

Yoon and Kim (2007) studied the optimization problem of hyper-

∗ Corresponding author. Tel./fax: +86 41184706202.

E-mail address: yangjunluo@dlut.edu.cn (Y. Luo).

elastic structures using an element connectivity parameterization

method. Ha and Cho (2008) proposed a level set based topological

shape optimization method for geometrically nonlinear hyperelas-

tic structures. Klarbring and Strömberg (2013) studied the topology

optimization of hyperelastic bodies subjected simultaneously to

external forces and prescribed non-zero displacements. By adopt-

ing the total potential energy concept and the ground structure

approach, Ramos and Paulino (2015) proposed a convex topology

optimization method for the design of hyperelastic trusses. In par-

ticular, Labuerta et al. (2013) addressed the instability problem in

the excessive distorted low density elements during the topology

optimization process of large-deformation hyperelastic structures.

The above-mentioned works for topology optimization of hy-

perelastic structures were all performed under the assumption

of fixed boundary conditions. Under a small strain assumption,

these boundary conditions can be approximated as deformation-

independent, considering the difference in the deformed and

undeformed configurations are negligible. However, for a hyper-

elastic structure subjecting to large deformations, the boundary

condition may change significantly.

As shown in Fig. 1(a), a hyperelastic beam is clamped at the

left end, and a rigid circular support is placed at the right end.

A vertical force F is applied to the middle point of the upper

side. Under a very small force, the boundary condition at the

right end can be simply modeled with a vertical support with

fixed location, as shown in Fig. 1(b). However, as the force F in-

creases and the beam further deflects, the support point on the

rigid surface undergoes significant change, as shown in Fig. 1(c).
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Fig. 1. A hyperelastic beam with frictionless contact supports. (a) Initial configuration. (b) Equivalent boundary condition under small deformation. (c) Deformed configura-

tion under large deformation.

Fig. 2. Schematic representation of the nonlinear spring model. (a) Actual rigid support. (b) Nonlinear spring modeling.

This simple example illustrates how a large deformation of the hy-

perelastic structure can change the contact reaction of supports,

which in turn affects the response of the structure. In practice,

this deformation-dependent boundary may widely occur in MEMS

devices (Mankame and Ananthasuresh, 2004), artificial joints and

other biomedical applications (Yao et al., 1994).

During the last 10 years, the problem of topology optimiza-

tion design involving contact has been extensively addressed

in the literature by many researchers, mainly for linear elas-

tic structures. Typically, Myśliński developed the topology and

shape optimization of the elastic body in unilateral contact by

the level set approach (Myśliński, 2008), the phase field ap-

proach (Myśliński, 2013) and the piecewise constant level set

method (Myśliński, 2015). Based on the SIMP (solid isotropic

microstructure with penalty) model, Fancello (2006) studied the

stress-constrained topology optimization with contact bound-

ary conditions. By using a smooth approximation of Signorini’s

contact conditions, Strömberg and Klarbring (2010) studied the

topology optimization problem for linear elastic bodies with

unilateral boundary conditions. Further, Strömberg (2012) pro-

posed an optimization model of maximizing the potential energy,

which will improve the numerical performance of this problem.

In addition, Andrade-Campos et al. (2012) proposed a heuristic

bone remodeling scheme to perform the 3D topology optimiza-

tion problem with contact. Lawry and Maute (2015) investigated

the topology design of two-phase material structures consid-

ering sliding contact and separation along interfaces. In these

existing studies, contact problems are implemented mostly for

the topology optimization of linear elastic structures. For the

topology design of a hyperelastic body involving contact, nu-

merical difficulties such as hyperelastic constitutive model and

instability in low-density elements, will make the problem more

complicated.

The aim of this work is to develop an effective topology op-

timization methodology for the design of hyperelastic structures

with deformation-dependent contact supports. For simplicity, we

assume the contact is frictionless and adhesionless. A nonlinear

spring model is constructed to model the contact condition of

a rigid surface. Using elemental density variables for the struc-

tural topology representation, an artificial material model with

penalization for the strain-energy function is assumed. The ad-

ditive hyperelasticity technique (Luo et al., 2015) is employed to

avoid the instability phenomenon occurred in low-density ele-

ments during the topology optimization process. In this context,

design sensitivities are obtained based on the adjoint variable

scheme and the compliance-minimization problem is solved by us-

ing the Method of Moving Asymptotes (MMA) (Svanberg, 1987).

Finally, numerical examples for topology optimization of large-

deformation hyperelastic structures are presented to show the im-

portance of considering contact supports and to demonstrate the

applicability of the proposed method.

2. Nonlinear spring model for frictionless contact boundary

Consider a hyperelastic structure which is adjacent to a fixed

rigid support as shown in Fig. 2(a). The potential contact surface

of the rigid support is first approximated with several circular arc

segments (spherical surface patches in 3D cases) with specified ra-

diuses (R1, R2, …). A flat surface can be naturally regarded as an

arc segment with a sufficiently large radius. As the hyperelastic

structure deforms under the action of external loads, contact at a

point or an area occurs on the surface of the rigid support. This

contact problem can be regarded as a displacement boundary con-

dition that suddenly becomes active if the gap between the struc-

ture and the support surface closes. Note that the position and the

reaction of contact points depend on the deformation of the hy-

perelastic structure.

In this study, a two-node nonlinear spring model, defined by

a generalized force–displacement curve, is used to simulate the

contact behavior of the frictionless rigid support. As shown in

Fig. 2(b), the rigid support is replaced by a number of nonlinear

springs whose stiffness varies from a zero value before contact to

a large value after contact. After approximating the support bound-

ary by circular arc segments, a group of springs are added between

the fixed center of the approximate arcs and the potential contact

points of the hyperelastic body. For each spring element, the inter-

nal force Fs will suddenly increase to a sufficiently large predefined

value if the relative displacement of two nodes becomes less than

a specified threshold value. Theoretically, using a step function for

the force–displacement relationship of the spring element is able
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