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a b s t r a c t

The non-linear elastic moduli of the Graphene sheet-reinforced polymer composite are investigated us-

ing a combined molecular mechanics theory and continuum homogenisation tools. Under uni-axial load-

ing, the linear and non-linear constitutive equations of the Graphene sheet are derived from a Taylor

series expansion in powers of strains. Based on the modified Morse potential, the elastic moduli and

Poisson’s ratio are obtained for the Graphene sheet leading to the derivation of the non-linear stiffness

tensor. For homogenisation purpose, the strain concentration tensor is computed by the means of the

irreducible decomposition of the Eshelby’s tensor for an arbitrary domain. Therefore, a mathematical ex-

pression of the averaged Eshelby’s tensor for a rectangular shape is obtained for the Graphene sheet.

Under the Mori–Tanaka micro-mechanics scheme, the effective non-linear behaviour is predicted for var-

ious micro-parameters such as the aspect ratio and mass fractions. Numerical results highlight the effect

of such micro-parameters on the anisotropic degree of the composite.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Thanks to its remarkable physical and mechanical properties,

Graphene has attracted extensive research investigations since its

discovery in 2004 as reported by Cao (2014). Graphene is usu-

ally studied as two-dimensional structure because of its nano-

scale thickness. For understanding the mechanical properties of

Graphene, several attempts have been employed among which ex-

perimental measurements and theoretical developments as well as

numerical modelling. The firsts i.e experiments provide the most

effective way to measure the elastic modulus of Graphene. Dif-

ferent values of Young modulus are presented in the open liter-

ature. These values are essentially derived from the free standing

indentation based on the Atomic Force Microscope (AFM). Works

by Lee et al. (2008) and Frank et al. (2007) as well as Zhang and

Pan (2012) should be cited. Moreover, much high elastic modu-

lus has been estimated by Lee et al. (2012). Indeed, using a Ra-

man Spectroscopy method they find values of 2.4 TPa and 2.0

TPa for a mono-layer and bilayer Graphene respectively. However,

Cao (2014) highlights that the value of the Poisson’s ratio cannot

be directly measured by experiments. Therefore, theoretical and

numerical studies have been developed based on the atomistic
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simulation at nano-scale and continuum/structural mechanics

modelling. These studies deal essentially with quantum mechan-

ics (QM) calculations for instance in Wei et al. (2009) and semi-

empirical methods like thigh-biding used in Cadelano et al. (2009);

Zhao et al. (2009) as well as molecular dynamics (MD) with em-

pirical inter-atomic potentials studied by Lu et al. (2011); Lu and

Huang (2009); Sakhaee-Pour (2009, 2009); Sakhaee-Pour et al.

(2008); Wang and Zhang (2012); Wang (2010); Zhang et al. (2012);

Zhao et al. (2009); Zhou et al. (2013a, 2013b). Under large de-

formations, the elastic behaviour of the Graphene sheet must be

considered non-linear. This implies the existence of an energy po-

tential that is function of the strain which can be expressed as a

Taylor series in powers of strain as presented by Lee et al. (2008).

Therefore, the stress-strain relationship is described by two param-

eters: the linear elastic modulus E and the non-linear elastic mod-

ulus D. This relationship has been used by Cadelano et al. (2009)

to derive the constitutive law and all non-linear moduli for the

Graphene stretching elasticity. Works by Wei et al. (2009) should

be cited.

Based on the above mentioned derivations, the Graphene sheet

represents an interesting reinforcement for designing multifunc-

tional polymer composites. Graphene-based polymer composites

(Ji et al. (2010)) are widely studied using micro-mechanics tools

like the scheme by Mori and Tanaka (1973). However, to derive

the effective properties of such composite materials, the Eshelby’s

tensor for the Graphene sheet accounting for its real geometrical
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Nomenclature

α1, α2 angle of the carbon bonds

�α
1
,�α

2
angle variations of the bonds

�θ angle variation for three neighbouring atoms

�r aariation of bonding length

ε applied strain

η aspect ratio

ν Poisson’s ratio

ρc, g, m density of the composite, Graphene, matrix

σ observed stress

σ x, σ y axial stress

τ xy shear stress

Ag localisation tensor

I identity tensor

Lg linear stiffness tensor

L effective linear stiffness tensor

Ng non-linear stiffness tensor

N effective non-linear stiffness tensor

S0 isotropic part of the Eshelby’s tensor

Sω anisotropic part of the Eshelby’s tensor

θ i interior points angles

Dg non-linear modulus of the Graphene sheet

Eg linear modulus of the Graphene sheet

i1, i2 orthonormal basis vectors

Mg mass fraction of the Graphene sheet

Mm mass fraction of the matrix

p2, q2, p4, q4 complex-variables of boundary integrals

r bond length

t thickness of the Graphene sheet

Uin−plane modified Morse potential

Vg volume fraction of the Graphene sheet

Vm volume fraction of the matrix

x, y position vectors

z relative position vectors

i unit imaginary number

morphology is less discussed and remain a challenging task.

Herein, we suggest that the Graphene sheet is not an elliptical

inclusion. It is therefore approximated by a rectangular shape.

Relevant researches that derive the Eshelby’s tensor for an arbi-

trary inclusion’s shape are due to Rodin (1996). He overcomes the

resolution of tricky integral equations due by non-uniformity of

the strain within non-ellipsoidal inclusions. He therefore derives

an algorithmic closed-form solutions of the Eshelby’s tensors for

arbitrary polygonal and polyhedral inclusions. Moreover, Nozaki

and Taya (1997, 2000) highlight that the Eshelby’s tensor at

the centre and the averaged Eshelby’s tensor over a polygonal

inclusion are equal to that of a circular inclusion whatever the

orientation of the inclusion. Using the irreducible decomposition

of the Eshelby’s tensor by Zheng et al. (2006), Zou et al. (2010)

derive explicit expressions of the Eshelby’s Tensor Field (ETF) and

its average for a wide variety of non-elliptical inclusions. They

formulate some remarks about the elliptical approximation to the

average of ETF which is valid for a convex non-elliptical inclusion

but becomes unacceptable for a non-convex non-elliptical inclu-

sion. Based on the results of Zou et al. (2010) mainly the averaged

Eshelby’s tensor, Klusemann et al. (2012) has investigated the

effective responses of composites consisting of non-elliptical shape

in the context of several homogenisation methods.

The goal of this work is to consider a rectangular inclusion

shape for deriving the non-linear elastic effective properties the

Graphene sheet-reinforced polymer composite. For such a pur-

pose, the Graphene sheet is considered undergoing non-linear

deformations. Therefore, a Taylor series expansion combined

with the non-linear stress- strain relationship used in Lee et al.

(2008), establishes the expressions of the second order linear

elastic and third order non-linear elastic moduli. This enables the

derivation of a non-linear constitutive behaviour based on the

Modified Morse potential for the Graphene sheet. The irreducible

decomposition of the Eshelby’s tensor by Zou et al. (2010) and

Klusemann et al. (2012) is combined with a rectangular aspect

ratio to provide the Graphene sheet with an averaged Eshelby’s

tensor for homogenisation purposes.

The paper is organised as follows: Section 2 establishes the the-

oretical framework for deriving the non-linear elastic stiffness ten-

sor of the Graphene sheet. In Section 3, the procedure for obtain-

ing the Eshelby’s tensor for the Graphene sheet is recalled, some

numerical calculations are also presented. The Mori–Tanaka micro-

mechanics scheme is applied in Section 4 leading to the compu-

tation of the effective moduli of the composite. Numerical results

obtained for different mass fractions are presented and discussed

versus the anisotropic degree of the composite.

2. Non-linear stiffness tensor of the Graphene sheet

2.1. Preliminaries on Taylor series expansion

Let us consider a real value function g(x) which is n times dif-

ferentiable at a real value point x0 with n being an integer. The

Taylor series expansion applied to the function g(x) is given such

as:

g(x) =
∞∑

n=0

g(n)(x0)

n!
(x − x0)

n
(1)

Now consider the function g(x) defined as:

g(x) =
√

a + bx (2)

where a and b are real constants. The derivatives of the function

g(x) for a quadratic truncation are given by:⎧⎪⎨
⎪⎩

g(x) = √
a + bx

g
′
(x) = b

2
√

a+bx

g
′′
(x) = b2

4(a+bx)
√

a+bx

(3)

Let us x0 = 0, then Eq. (3) can be rewritten as follows:⎧⎪⎨
⎪⎩

g(0) = √
a

g
′
(0) = b

2
√

a

g
′′
(0) = b2

4a
√

a

(4)

This finally leads to:

g(x) =
√

a + bx ≈ √
a + b

2
√

a
x − b2

4a
√

a
x2 (5)

Eq. (5) will be used in Section 2.2 to derive the non-linear stiffness

tensor for the Graphene sheet.

2.2. Theoretical framework

For the Graphene sheet, the experimental force-deformation re-

lation can be expressed as a phenomenological non-linear scalar

relation between the applied strain ε and the observed stress σ :

σ = Eε + Dε2 (6)

where E denotes the Young’s modulus. It is determined from com-

ponents of the second-order fourth rank stiffness tensor. D stands

for the non-linear (third order) elastic modulus. It is determined

from components of both the second-order fourth rank stiffness
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