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a b s t r a c t

The formation of two misfit edge dislocations in the interfaces of a stressed thin layer embedded in

a matrix has been theoretically investigated from an energy variation calculation as a function of the

lattice mismatch between the layer and matrix. The equilibrium positions of the dislocations have been

determined and the two configurations where the arm orientations of the dipole are normal or inclined

to the interfaces have been discussed versus the nanostructure dimensions and lattice mismatch.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

The mechanical stability of nanostructured materials is a long-

standing problem that has been considered from both experimen-

tal and theoretical point of view (see Freund, 1993; Freund and

Suresh, 2003; Gutkin et al., 2015a; Gutkin and Smirnov, 2015; Kle-

man and Friedel, 2008; Nix, 1989 and references therein for re-

view). In this framework, the formation of dislocations in axi-

symmetrical composite structures has been intensively studied be-

cause of the numerous applications of such nanostructures in

nano-electronics and optics (Dimakis et al., 2014; Gül et al., 2014;

Rieger et al., 2015). The introduction of prismatic dislocation loops

in the interface between a cylindrical precipitate embedded in a

finite-size matrix has been for example investigated from a static

energy variation calculation and the critical thickness of the in-

ner cylinder has been determined versus the misfit strain (Ovid’ko

and Sheinerman, 2004). Likewise, the equilibrium critical thickness

for the dislocation formation has been determined for pillar or

fin heterostructure epitaxial film systems (Liang et al., 2005) and

the effects of substrate compliance and geometry have been anal-

ysed. A methodology to produce coherent coaxial nanowire het-

erostructures has been then developed in Raychaudhuri and Yu

(2006). The problem of formation of isolated or dipoles of edge or

screw dislocations has been also considered in nanoscale cylindri-

cal inhomogeneity due to misfit and/or interface stresses (Enzevaee

et al., 2014; Fang et al., 2008; 2009a, 2009b; Shodja et al., 2015;

Wang et al., 2010). For oxide-covered nanowires, a strain gradient
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plasticity model has been developed and the flow stress at

which the interfaces are plastically deformed has been determined

(Aifantis et al., 2007). Likewise, the dislocation emission from

nanovoid has been studied taking into account the effect of neigh-

bouring nanovoids and surface stress, and a model of nanovoid

growth has been proposed in ductile porous materials (Zhao et al.,

2014). In the case of nanowires of rectangular cross-section em-

bedded in composites, the effects of misfit strain, nanowire size

or interspacing between the nanowires have been characterized

on the introduction in the nanowire interfaces of loops, semi-

loops and dipoles of dislocations (Gutkin et al., 2003). For spheri-

cal precipitates embedded in a matrix, the introduction of disloca-

tions has been also considered (Gutkin et al., 2015a; 2014a; 2015b;

Gutkin and Smirnov, 2014; Gutkin et al., 2014b).

The problem of formation of misfit dislocations in planar

multilayered structures has been investigated by Matthews and

Blakeslee (1974) who observed that in GaAs and GaAs0.5P0.5 thin

films grown on GaAs substrates, the interfaces were composed of

large coherent areas separated by inclined misfit dislocations of

type a
2 〈110〉, with a the lattice parameter. They also determined

the critical thickness of the layers as a function of the misfit strain,

beyond which the formation of these dislocations is energetically

favourable. Later, the formation of misfit dislocations in the inter-

faces of an embedded layer in a semi-infinite matrix has been then

theoretically investigated and the effects of lattice mismatch and

interface mixing have been characterized (Colin et al., 1997; Grilhé

and Junqua, 1992). In buried or capped strained semiconductor lay-

ers such as Si/GexSi1−x/Si and GaA/InxGa1−x/As, the formation of

isolated and dipole misfit dislocations has been intensively stud-

ied. For layers grown in the (001) direction, the dislocations be-

ing found to be of 60° type (Gosling et al., 1993). The effect of
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predeposited interfacial dislocations in the interfaces of nanoscale

multilayered structures such as Cu–Ni system has been then inves-

tigated on the propagation of threading dislocations, the effects of

inclination of the Burgers vectors of the arrays of interfacial and

gliding dislocations has been characterized (Akasheh et al., 2007).

For strained (0001) InGaN/GaN layers, a stress relaxation mecha-

nism has been proposed through the generation of V-shaped edge-

type dislocation half-loops (Lobanova et al., 2013).

In this context, it thus appears relevant to investigate the con-

ditions of dipole formation in the interfaces of buried and strained

layers and the relative position of the dislocations. The formation

of a dipole of edge dislocations in the centre of a layer embedded

in a matrix has been recently analysed (Colin, 2014) when the two

lateral free-surfaces are considered, this dipole configuration being

either metastable or stable configuration. It is the purpose of the

present paper to study from a theoretical point of view, the condi-

tions on the layer dimensions and misfit strain required for the de-

velopment of the configurations where the arm orientations of the

dipole are whether normal or inclined to the interfaces, when the

misfit edge dislocations are generated from the lateral free-surfaces

into the layer interfaces.

2. Modelling

A thin layer of material A is embedded in a matrix of mate-

rial B (see Fig. 1 for axes). The thickness of the A layer is labelled

h and its length L. The width of the structure is assumed to be

infinite along (Oz) axis. Due to the lattice mismatch δa = aB − aA

between both materials A and B along (Ox) and (Oy) axes, a misfit

strain is lying in the structure which has already been calculated

(Colin et al., 1997) in the framework of the plane strain hypothesis

of the linear and isotropic elasticity theory, using the Airy function

formalism (Hirth and Lothe, 1982; Timoshenko and Goodier, 1951),

with aA and aB the lattice parameters of materials A and B, respec-

tively. It is assumed for definiteness that aB > aA such that δa > 0.

For example, the shearing component of the misfit stress responsi-

ble for the dislocation formation in the interfaces has been found

to be (Colin, 2014):

σ 0
xy(x, y) = σ0

2π

∫ +∞

−∞

(L + x) sinh[kx] − x sinh[k(L + x)]

kL + sinh[kL]

× (1 − eikh)eik(y−h) dk, (1)

with σ0 = 2μ 1+ν
1−ν

δa
a the misfit stress far from the lateral surfaces

due to the lattice mismatch through the interface along the (Ox)

and (Oy) axes, with a = (aA + aB)/2. It is emphasized at this point

that the dislocations are assumed to pre-exist at the free-surfaces,

the shearing stress in the interface being responsible for the propa-

gation of the dislocations from the free-surfaces to a given distance

in the layers. The nucleation mechanism of the dislocations at the

free-surfaces, from surface steps for example, is beyond the scope

of the present analysis. In particular, the nucleation of a dislocation

semi-loop should be more favourable than the nucleation of the

dipole composed of two parallel edge dislocations. For symmetry

reason, the misfit edge dislocations of Burgers vectors (b, 0) and

(−b, 0) considered in this work are assumed to be introduced in

the interfaces at (−L/2 + d, 0) and (−L/2 − d, h) respectively, with

d a positive constant characterizing the inclination of the dipole

arm with respect to the vertical axis of symmetry of the structure

(see Fig. 1). To determine the stress field of the dislocations, the

formalism of Airy function has been used again (Timoshenko and

Goodier, 1951). The well-known initial stress of the two edge dis-

locations in an infinite medium ¯̄σ d,∞ is first considered (Hirth and

Lothe, 1982) and the mechanical equilibrium conditions on both

lateral free-surfaces located at x = −L and x = 0,

σ d,∞
xx (0, y) + σ d,rel

xx (0, y) = 0, σ d,∞
xy (0, y) + σ d,rel

xy (0, y) = 0, (2)

Fig. 1. A layer of material A is epitaxially strained in a matrix of material B. The

thickness of the layer is labelled h and the length L. Two misfit dislocations of Burg-

ers vectors (b, 0) and (−b, 0) are considered in the interfaces at (−L/2 + d, 0) and

(−L/2 − d, h), respectively.

σ d,∞
xx (−L, y) + σ d,rel

xx (−L, y) = 0, σ d,∞
xy (−L, y) + σ d,rel

xy (−L, y) = 0,

(3)

have been then used to determine the relaxation stress ¯̄σ d,rel due

to the free-surfaces. This relaxation stress is characterized by an

Airy function φd, rel whose general expression is (Hirth and Lothe,

1982; Timoshenko and Goodier, 1951):

φd,rel(x, y) = σ0

4π

∫ +∞

−∞

[
(Arel

d + Brel
d x) cosh[kx]

+ (Crel
d + Drel

d x) sinh[kx]
]
eiky dk, (4)

with Arel
d

, Brel
d

,Crel
d

and Drel
d

four constants that have been found

to be with the help of Eqs. (2) and (3) (Wolfram Research, Inc.,

2009):

Arel
d = − i | k |

4k3
e−ikh− 1

2 (L+2d)|k|(2 + 2d | k | +L | k | +eikh+2d|k|

× (−2 + (2d − L) | k |)), (5)

Brel
d = − ie−ikh− 1

2 (L+2d)|k|
4 | k | (1 + 2k2L2 − cosh[2kL])

× (2kL(e2d|k|(−2 + (2d − L) | k |)
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