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a b s t r a c t

The elastic properties of porous materials with a disordered pore structure are estimated using the mean-

field Eshelby homogenization scheme together with the principle of recurrence to generate a cascade of

effective microstructures as a function of the porosity and the cascade level n. Starting with the Hashin–

Shtrikman upper bound for porous materials, the proposed cascade micromechanics model generates a

hierarchy of micro-structures which evolve from an initial configuration of a porous material with spher-

ical pores embedded within an elastic solid phase consistent with the Mori–Tanaka matrix inclusion mor-

phology to a porous material characterized by a hierarchic distribution of spherical elastic grains. The

model is explicit and allows for an easy computational implementation. It predicts physically consistent

threshold porosities, characteristic for the specific morphology of the porous material under considera-

tion, beyond which the material loses its stiffness. The validity of the cascade micromechanics model is

evaluated against experimental data for various materials ranging from foam to ceramics with different

pore structures.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

A large number of engineering, biological and geological ma-

terials such as ceramics, concrete, wood, bricks, rocks, polymers,

biological tissues and bones are characterized by a heterogeneous

porous micro-structure. Evidently, the pore-space is a fundamental

micro-structural quantity which strongly determines the phys-

ical properties of the material such as the stiffness, strength,

conductivity, permeability and diffusivity. Information about the

dependence of these properties on the porosity (i.e. the ratio of

the total volume of the pore-space to the total volume) and the

topology of the pore-space is of fundamental scientific and engi-

neering importance that has been intensively studied. In general,

with increasing porosity, the macroscopic stiffness and conduc-

tivity decreases while the permeability and diffusivity increases.

However, despite intensive research in the area of multiscale

modeling, a unified quantitative relationship between the effective

properties of porous materials and the relative size and the topol-

ogy of the pore-space is still under investigation. The difficulties

lie particularly in the different configurations of pore structure

and adequate consideration of the pore space topology. Depending
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on the pore topology, different connectivity characteristics of the

pore-space having the same total porosity may lead to different

effective properties, which may vary considerably depending on

the material type. Another challenge for homogenization models

is the correct prediction of a percolation threshold (Broadbent and

Hammersley, 1957) of the effective stiffness, i.e. a limit level of

porosity, above which, due to the connectivity of the pore space

and the missing inter-granular pathways, the material is no longer

able to carry loads and therefore fails.

Voigt (1889) and Reuss (1929) proposed the first ‘effective prop-

erty’ models through the rule of mixtures that reflect a parallel and

a serial arrangement of the phases. The models provide the earliest

bounds (Hill, 1963) on the effective elastic properties. For isotropic

porous materials, the Voigt estimate is kV
e f f

= ksφs and μV
e f f

= μsφs

and the Reuss estimate is kR
e f f

= μR
e f f

= 0. ks, μs and φs are the

bulk, shear modulus and the volume fraction of the solid phase.

These are the widest possible bounds.

Assuming an isotropic distribution of the phases and macro-

scopic homogeneity, Hashin and Shtrikman (1963) derived im-

proved bounds using a variational approach, given the volume frac-

tions and the phase moduli. For two-phase porous materials, the

bounds are obtained by exchanging the roles of the matrix and the

inclusion in estimating the effective bulk and shear moduli. For the

case of porous materials, the lower bound k
HS↓
e f f

(solid grains sur-

rounded by a pore-space matrix) coincides with the Reuss estimate
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kR
e f f

and the upper bound k
HS↑
e f f

improves the Voigt estimate kV
e f f

such that for porous materials: 0 = kR
e f f

= k
HS↓
e f f

< k
HS↑
e f f

< kV
e f f

.

Porous materials belong to the class of high-contrast matrix in-

clusion composites such that
kp

ks
= 0 as the bulk modulus of the

pore kp = 0. For this class of materials, the Hashin–Shtrikman (H–

S) bounds cover a wide range of effective moduli, which maybe in-

terpreted to be related to the large range of microstructure topolo-

gies, which varies from foam-like materials to ceramics. As a con-

sequence, within these bounds, the connectivity of the phases and

the corresponding percolation threshold strongly dictate the char-

acter of the effective property.

Since the 1960s, the Eshelby matrix-inclusion problem (Eshelby,

1957) (among others) has been applied in conjunction with vol-

ume averaging to estimate the effective properties of a wide range

of heterogeneous porous materials (Dormieux and Kondo, 2005;

Hellmich, 2005; Hill, 1965a; Lemarchand et al., 2003; Pichler et al.,

2008, 2007). This methodology is referred to as continuum mi-

cromechanics (see, e.g. Hashin, 1983; Suquet, 1997; Zaoui, 2002

for an excellent overview). Within the framework of continuum

micromechanics, according to the dilute scheme, the microstruc-

ture information is specified by a direct application of the Es-

helby matrix-inclusion solution (Eshelby, 1957). As the name sug-

gests, this scheme is applicable only for a low volume fraction of

pores. However, the dilute scheme can be cumulatively applied in

small increments, leading to the differential scheme (McLaughlin,

1977; Norris, 1985), which covers the complete range of porosi-

ties. One of the most widely applied micromechanics models is the

Mori–Tanaka scheme (Benveniste, 1987; Mori and Tanaka, 1973), in

which the far-field boundary condition used in the dilute scheme is

modified to account for the interactions of the pores. In contrast

to the aforementioned explicit schemes, the self-consistent scheme

for porous materials (voids embedded in an elastic matrix) (Hill,

1965b) assumes that the phases are surrounded by the yet un-

known effective medium, which leads to an implicit formulation.

However, this scheme leads to physically meaningless solutions

above a particular porosity (Budiansky, 1965; Hill, 1965b; Willis,

1977). While this particular porosity may be interpreted as a ‘per-

colation threshold’ (see Xia and Thorpe, 1988 for critical arguments

against this interpretation), the explicit homogenization schemes

such as the Mori–Tanaka scheme or the differential scheme, largely

overestimate the effective elastic properties at high porosities and

do not predict a threshold porosity, beyond which the material

cannot sustain any loading (see Fig. A.15 in Appendix A). This holds

both for spherical pores and an isotropic distribution of prolate

(needle shaped) spheroidal pores in a solid elastic matrix. If an

isotropic distribution of penny shaped pores is assumed, depend-

ing on the aspect ratio, a threshold can be predicted (see Fig. A.16

in Appendix A). However, while such a pore morphology is well

suited for the representation of distributed cracks, it is not an ap-

propriate morphology for the pore space of intact porous materials

and therefore will not be considered in this paper. Thus, within the

framework of continuum micromechanics, given the porosity of the

material, the modeling of the pore structure requires the adequate

choice of the homogenization scheme and the pore geometry.

As an alternative to using the framework of continuum mi-

cromechanics, numerical models maybe used to generate a

discretized computational model of a representative elementary

volume (REV) of porous materials to obtain effective elastic prop-

erties (see, e.g. Roberts and Garboczi, 2002; Wriggers and Moftah,

2006) from averaging. This approach allows direct incorporation of

the complex pore space topology of a specific material, obtained,

e.g. from CT measurements, into the model. Considering the

considerable computational effort required for an adequate reso-

lution of the pore space, currently computational homogenization

methods only allow for the representation of a limited range of

spatial scales.

In this paper, we propose a micromechanics model for the

determination of effective elastic properties of porous materials,

adopting the idea of self-similarity of hierarchical pore structures,

which is based on a recursive scheme to obtain a cascade of

matrix-inclusion problems. A similar concept was applied recently

to the determination of effective diffusivities in porous materials

(Timothy and Meschke, 2015). In addition to the porosity φp, the

model is characterized by the cascade level n as a new order pa-

rameter to predict the effective elastic properties of porous ma-

terials. In contrast to power-law type models, which are generally

based upon empirical fitting parameters, the cascade level n can be

directly correlated with actual microstructure morphologies as the

model is consistently formulated within the framework continuum

micromechanics. For clarity and simplicity, we focus on spherical

inclusions in the main part of the paper. For a discussion on the

influence of the pore shape, also needle and penny shaped pore

morphologies are addressed in Appendix A.

2. Continuum micromechanics of porous materials

In this subsection, a brief review of existing continuum mi-

cromechanics schemes is provided in order to provide a suitable

introduction to the proposed model presented in Section 3. Within

the framework of continuum micromechanics, the effective mate-

rial properties of random porous materials can be determined, as-

suming the existence of a representative elementary volume (REV).

The validity of the assumption of the REV is subject to satisfying

the condition of scale separation. The characteristic length mea-

sures of the structure is assumed to be much larger than that of

the REV at the ‘macro-scale’ which is again assumed to be much

larger than the length scale of the heterogeneity (pores or grains)

at the ‘micro-scale’.

The total volume of the REV can be written as a sum of the

volume of the pore-space Vp and the volume of the solid phase

Vs:

VREV = Vp + Vs. (1)

A point in the domain � of the REV and on its boundary �

is represented by the position vector x. If a uniform macroscopic

strain E is prescribed, the boundary conditions for the REV are

given as (Hashin, 1983; Nemat-Nasser and Hori, 1999),

u(x) = x · E, ∀x ∈ � (2)

Denoting ε(x) as the local strain-field in the REV, which is sub-

ject to prescribed displacement boundary conditions (2), the vol-

ume averaged1 strain in the porous REV is written in the form

〈ε(x)〉REV = E = φp〈ε〉p + φs〈ε〉s. (3)

φp = Vp

VREV
and φs = Vs

VREV
denote the volume fractions of the pore-

space and the solid phase, respectively, such that, according to Eq.

(1), φp + φs = 1. 〈ε〉p is the average strain in the pore-space and

〈ε〉s is the average strain in the solid phase. The following linear

relationship is assumed between the strain E at the macro-level

and the strain at the micro-level, i.e. in the pore space 〈εp〉 and in

the solid phase 〈εs〉, respectively:

〈ε〉s = As : E, and 〈ε〉p = Ap : E. (4)

As and Ap are averaged fourth-order localization tensors of the

solid phase and the pore phase. Substituting Eq. (4) into Eq. (3)

provides the identity

φpAp + φsAs = I. (5)

1 〈 · 〉i = 1
Vi

∫
Vi
(·)dV
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