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a b s t r a c t

We present a novel approach to solve the inverse problem in finite elasticity for the non-homogeneous

shear modulus distribution solely from known surface deformation fields. The inverse problem is posed

as a constrained optimization problem under regularization and solved utilizing the adjoint equations.

Hypothetical “measured” surface displacement fields are created, by inducing indentations on the exte-

rior of the specimen. These surface displacement fields are used to test the inverse strategy on a problem

domain consisting of a stiff circular inclusion in a softer homogeneous background. We observe that the

shear modulus reconstruction as well as the shape of the circular inclusion improves with an increasing

number of surface displacement fields. Furthermore, with increasing noise level in the surface displace-

ment field, the contrast of the reconstructions decreases.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Inverse problems in elasticity aim to solve for the non-

homogeneous material properties, requiring the knowledge of dis-

placement fields and boundary conditions, e.g. Neumann and

Dirichlet boundary conditions. Material properties, such as the

Young’s modulus, shear modulus, or Poisson’s ratio can be deter-

mined for a linear elastic material non-destructively. Other consti-

tutive models, such as viscoelastic, poro-elastic, and hyperelastic

models, will possess additional material parameters and can po-

tentially be determined from dynamic displacement and large dis-

placement data (Goenezen, 2011; Goenezen et al., 2011a, 2011b;

Ipek-Ugay et al., 2015; Tzschätzsch et al., 2015). Knowing the ma-

terial parameter distribution in a solid could potentially have im-

portant applications in a broad range of disciplines. In human or

animal tissue mechanics the change in material properties could

be correlated to distinct tissue types, thus could help to clas-

sify tissues non-invasively and to monitor their change periodi-

cally in the living organism. Quantifying the material properties

of diseased tissues may provide clues on the type of the disease

(Samani and Plewes, 2007a, 2007b; O’Hagan and Samani, 2009;

Goenezen, 2011; Richards and Doyley, 2011; Goenezen et al., 2012).

This can be done as the tissue composition changes with disease

development, which is manifested in the macroscopic mechanical

response. Another potential application area is in detecting
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structural failure by monitoring changes in their local mechanical

response.

As mentioned earlier, the solution of the inverse problem re-

quires measured displacement fields, which in general are acquired

in the entire interior of the solid. This is currently done using state

of the art magnetic resonance imaging (Muthupillai et al., 1995;

Sack et al., 2001; Shah et al., 2004; Othman et al., 2005; Atay

et al., 2008; Kwon et al., 2009; Neu et al., 2009; Othman et al.,

2012; Johnson et al., 2013), ultrasound techniques (Ophir et al.

1991, Varghese and Ophir 1996, Garra et al. 1997, de Korte et al.

1998, Ophir et al. 1999, Varghese et al. 2000, Burnside et al. 2007,

Patil et al. 2008), optical coherence tomography (Schmitt 1998,

Peng et al. 2011, Goenezen et al. 2012, Nguyen et al. 2014), or

computed tomography scans. This is feasible as these devices en-

able to image the interior of solids while being actively or pas-

sively deformed. Furthermore, these imaging modalities are non-

invasive, thus the material properties of a non-homogeneous tissue

can be determined non-invasively and in vivo. This opens up new

possibilities in diagnostic imaging modalities to detect and diag-

nose diseased tissues such as breast cancers, liver cirrhosis, ma-

lignant melanoma, prostate cancer, etc. The inverse problem has

been solved directly from the underlying partial differential equa-

tion in elasticity (Skovoroda et al., 1999; Zhu et al., 2003) and indi-

rectly by minimizing an objective function under the constraint of

the underlying partial differential equations in elasticity (Kallel and

Bertrand, 1996; Doyley et al., 2000; Gokhale et al., 2008; Oberai

et al., 2009; Goenezen, 2011; Goenezen et al., 2011a, 2011b, 2012;

Richards and Doyley, 2011; Barbone et al., 2014).
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An alternative approach to solve the inverse problem in elas-

ticity is by using observations from the exterior of the sample

only. This procedure provides little information to infer the sub-

surface material property distribution of the sample. The solution

to this problem has been shown with hypothetical data (Schnur

and Zabaras, 1992; Liu et al., 2003; Peters et al., 2004; Olson and

Throne, 2010, 2013) and experimental data (Samani et al., 2003,

2007; Samani and Plewes 2004, 2007a, 2007b; Peters et al. 2006,

2008a, 2008b, 2009; O’Hagan and Samani 2008; Lotz et al. 2010;

Van Houten et al., 2011; Kaster et al. 2011; Omidi et al. 2014) to

recover the target material property distribution using limited sur-

face observations. Liu et al. (2003) developed an analytic method

based on micromechanical theory while other techniques rely on

finite element methods (Schnur and Zabaras, 1992; Samani et al.,

2003, 2007; Peters et al., 2004, 2006, 2008a, 2008b, 2009; Samani

and Plewes 2004, 2007; O’Hagan and Samani 2008; Lotz et al.,

2010; Olson and Throne, 2010, 2013; Van Houten et al., 2011;

Kaster et al. 2011; Omidi et al., 2014). These approaches utilized

measured static surface deformations (Schnur and Zabaras, 1992;

Liu et al., 2003; Samani et al., 2003, 2007; Samani and Plewes,

2004, 2007; O’Hagan and Samani, 2008; Olson and Throne 2010,

2013; Kaster et al. 2011; Omidi et al. 2014), time harmonic sur-

face deformations using high-speed cameras (Peters et al., 2004,

2006, 2008, 2009; Lotz et al., 2010; Van Houten et al., 2011), and

force information (Samani et al., 2003, 2007; Samani and Plewes,

2004, 2007; O’Hagan and Samani, 2008; Kaster et al., 2011; Omidi

et al. 2014). In Samani and Plewes (2004), O’Hagan and Samani

(2008), Kaster et al. (2011), and Omidi et al. (2014) larger defor-

mations were acquired to quantify the nonlinear material response

for various hyperelastic models on excised breast and brain tissues.

Therein, the authors did not intend to develop a non-invasive ap-

proach, but rather have shown distinct nonlinear responses for dis-

eased tissues in general. The approaches discussed above utilize a

priori information that in general may not be available. Assump-

tions such as knowing the location of the object in the solid do-

main, its size, or shape, limit their practical application. Further-

more, the solution space is equal to the number of unknown prop-

erties of the objects and their surrounding material.

In this paper, we will solve the inverse problem in elasticity in

a hypothetical study for the shear modulus distribution using only

surface deformations. This methodology does not require any a pri-

ori information about the problem domain. It is based on finite

element techniques, and the shear modulus distribution is repre-

sented as unknowns on the mesh nodes and interpolated with fi-

nite element shape functions. Thus, the number of unknown shear

modulus values is equal to the total number of finite element

nodes. We will test this method on a problem domain consisting

of an inclusion embedded in a homogeneous background, and re-

cover the shear modulus distribution using simulated surface dis-

placement fields. Additionally, we add noise to the data to mimic

measured surface deformations from recorded digital camera im-

ages.

2. Methods

2.1. Inverse problem formulation utilizing measured surface

displacement

The solution of the inverse problem is highly unstable to

noisy displacement data, thus is formulated as a constrained op-

timization problem. More precisely, the misfits between mea-

sured and computed surface displacements are minimized un-

der the “control” of a regularization term. One “natural” way

to formulate the inverse problem statement is as follows.

Find the shear modulus distribution μ such that the objective

function

F =
n∑

i=1

∫
�i

(
ui − ui

meas

)2
d� + αReg(μ) (1.1)

is minimized under the constraint of the forward elasticity prob-

lem. The first term is the displacement correlation term, minimiz-

ing the square of the misfit between the computed ui and mea-

sured ui
meas surface deformations on the problem boundary. The

summation indicates that this formulation can accommodate mul-

tiple surface displacement fields, where n denotes the total num-

ber of observations. It is emphasized that the boundary integral

�i is intentionally augmented with the index i to accommodate

surface displacement data on varying boundaries. This is because

it may not be feasible to observe data on the same sub-boundary

domain for each experiment. The second term is the so-called reg-

ularization term to penalize oscillations in the final solution of the

shear modulus distribution. We will define the particular regular-

ization type later on.

The inverse problem formulation in Eq. (1.1) is expressed anal-

ogous to Kallel and Bertrand (1996), Doyley et al. (2000), Oberai

et al. (2003), Gokhale et al. (2008), Goenezen (2011), Goenezen

et al. (2011a, 2011b, 2012), Hall et al. (2011), Mei and Goenezen

(2015), but differs in that the predicted and measured displace-

ments are correlated on the surface while the referenced ap-

proaches correlate the displacements in the entire interior of the

problem domain. Discretizing Eq. (1.1) with finite element tech-

niques is straightforward. This will be demonstrated for one dis-

placement field to reduce notations, this is

F =
∫
�

(�u)
2
d� + αReg(μ), (1.2)

where �u = u − umeas. The finite element interpolation yields

F =
N∑

e=1

∫
�e

[
Ne∑
j=1

�ue
jN

e
j (x)

]2

d� + αReg

(
Nn∑

k=1

μ jNj(x)

)
(1.3)

where N, Ne, and Nn denote the total number of finite elements

on the boundary, the number of nodes on each element, and the

total number of mesh nodes in the problem domain, respectively.

Further, Ne
j
(x) denotes the shape function for the jth node corre-

sponding to the eth linear triangular element. While this approach

appears to be reasonable, we employed an alternative formulation

to facilitate implementation. More precisely, we have used domain

integrals over finite elements at the boundary, given by

F =
N̄∑

e=1

∫
�e

[
N̄e∑
j=1

�ue
jN

e
j (x)

]2

d� + αReg

(
Nn∑

k=1

μ jNj(x)

)
(1.4)

where N̄ denotes the total number of domain elements at the

boundary and N̄e denotes the number of element nodes on the

boundary of the corresponding elements. It is noted that only dis-

placement information on the boundaries is assumed to be known,

despite the integration over element domains. This more “unnatu-

ral” approach has been performed to use the current framework of

the existing inverse solver written for minimizing the misfit in dis-

placements over the volume integral. In the following we will ana-

lyze the implications of using Eq. (1.3) versus Eq. (1.4) on a uniform

mesh given in Fig. 1. The coordinate s spans along one boundary

edge of a problem domain in two dimensional space and we dis-

card the other boundary edges to simplify the analysis (see bold

elements in Fig. 1). The width of the elements along the t coor-

dinate is denoted by a, and the height along the s coordinate of

the elements is denoted by b. Evaluating Eq. (1.4) for the boundary
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