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a b s t r a c t

A simplified model of periodic chiral beam-lattices containing local resonators has been formulated to ob-

tain a better understanding of the influence of the chirality and of the dynamic characteristics of the local

resonators on the acoustic behaviour. The beam-lattice models are made up of a periodic array of rigid

heavy rings, each one connected to the others through elastic slender massless ligaments and containing

an internal resonator made of a rigid disk in a soft elastic annulus. The band structure and the occurrence

of low frequency band-gaps are analysed through a discrete Lagrangian model. For both the hexa- and

the tetrachiral lattice, two acoustic modes and four optical modes are identified and the influence of the

dynamic characteristics of the resonator on those branches is analysed together with some properties of

the band structure. By approximating the ring displacements of the discrete Lagrangian model as a con-

tinuum field and through an application of the generalized macro-homogeneity condition, a generalized

micropolar equivalent continuum has been derived, together with the overall equation of motion and the

constitutive equation given in closed form. The validity limits of the dispersion functions provided by the

micropolar model are assessed by a comparison with those obtained by the discrete model.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

It is well known that the propagation of elastic waves may

be strongly affected by periodic arrangement of scatterers in the

material microstructure, in which the density and the elastic

constants are periodic function of the position. This has spurred

many researches on new materials such as phononic crystals and

metamaterials for the control of vibrational waves (see Lu et al.,

2009; Pennec et al., 2010; Deymier, 2013; Craster and Guenneau,

2013). In fact, the periodicity of the material microstructure

may lead to destructive interferences inducing attenuation of the

amplitude of the travelling waves for some bands of frequencies

called acoustic wave spectral gap or band gaps.

Lattice materials are phononic crystals whose properties have

been extensively studied from the seminal book of Brillouin

(1953). Band gaps in periodic lattices were observed by Phani

et al. (2006), who analysed the band structure of beam-lattices

with ligaments rigidly connected at the nodes and modelled as

Timoshenko beams with uniformly distributed mass. This acoustic

behaviour may be markedly affected by the lattice topology, as

shown by Wang et al. (2015), and is particularly attractive in the

case of auxetic lattices (see Prawoto, 2012) because of their disper-
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sive properties (see Krödel et al., 2014). In this class of materials,

the chiral lattices have raised the interest of many researchers and

several theoretical and experimental studies on their phononic

properties have been carried out. A special attention has been

devoted to hexachiral lattices, made up of circular rings each of

them connected to its neighbours with six ligaments tangent to

the ring itself, whose constitutive equation were firstly obtained

by Prall and Lakes (1997). Spadoni et al. (2009), carried out a

computational investigation on dispersive wave propagation in

hexachiral lattices made up of elastic rings and ligaments with dis-

tributed mass. The periodic cell was analysed with Bloch boundary

conditions for several ratios between the length of the ligaments

and the diameter of the rings and band gaps in the frequency

spectrum were obtained. A band gap structure for plane tetrachiral

lattices was experimentally obtained and numerically simulated by

Tee et al. (2010). Based on the Bloch approach incorporating the

finite element method, the analysis of the acoustic properties of

trichiral lattices developed by Xu et al., 2013, showed the existence

of low frequency band-gaps for this lattice topology.

Hexa- and tetra-chiral beam-lattices have also described

through equivalent continua mainly based on the micropolar

model (see Spadoni and Ruzzene, 2012; Liu et al., 2012; Chen

et al., 2014; Bacigalupo and Gambarotta, 2014a; Bacigalupo and

De Bellis; 2015). Dispersive functions for homogenized hexachiral

and tetrachiral lattices have been obtained by Liu et al. (2012) and
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Chen et al. (2014), respectively. However, in the domain of the

considered wave numbers, these equivalent micropolar models do

not exhibit band gaps.

To obtain low frequency band gaps, the insertion in the

microstructure of local resonators generally made of a hard core

surrounded by a soft coating has been proved particularly effective.

In fact, the locally resonant material may exhibit the emergence

of stop bands at frequencies around the natural frequency of the

resonator with overall negative mass density and bulk modulus

(see for instance Liu et al., 2000; Huang et al., 2009a, 2009b; Lai

et al., 2011; Raghavan and Srikantha Phani, 2013; Krushynska et al.,

2014). Chiral periodic metamaterials with internal locally resonant

structures supporting tunable low-frequency stop bands have been

recently proposed by Liu et al. (2011a), Bigoni et al. (2013), and

Zhu et al. (2014). In particular, Liu et al. (2011a), have shown

that the coupling between the local translational and rotational

resonances, stemming from the chiral microstructure, may result

in low frequency band gaps and other exotic acoustical effects.

Hexachiral beam-lattices integrated with local resonators made

up of a softly coated heavy cylinder located inside the rings were

analysed numerically by Liu et al. (2011b), for low-frequency wave

applications. Through a finite element analysis of the periodic cell

with Bloch boundary conditions, the dispersive functions were

derived in the reduced Brillouin domain and low-frequency band

gaps were obtained. The influence of internal resonators on the

band structure of tetra-chiral lattices was analysed by Zhu et al.

(2015), through an FE analysis of the periodic cell. These numer-

ical results, corroborated by comparisons with those obtained by

experiments, confirmed the internal resonators as effective devices

to obtain low frequency band gaps.

The present paper is focused on understanding of the acoustic

behaviour of these chiral beam-lattices with two different aims.

A first issue concerns the assessment of the influence of the

microstructure chirality and of the dynamic characteristics of the

resonators on the acoustic behaviour of the lattice, with particular

interest in the formation of low-frequency band gaps. With this

purpose, a simplified model of hexachiral and tetrachiral lattices

(see Fig. 1) has been considered, having a reduced number of

degrees of freedom and therefore able to provide some useful

analytical results to appreciate the sensitivity of the acoustic band

structure on both the lattice chirality and on the properties of the

resonator. The ligaments are connected to the rings according to

different configurations, ranging from the achiral geometry, with

the ligaments normal to the ring, to that of maximum chirality,

with the ligaments tangent to the ring. The ligaments are mod-

elled as massless Euler–Bernoulli beams and the rings are assumed

rigid and equipped with mass, as well as the cylindrical mass of

the resonator. The first assumption relies on the consideration

that inertial forces along the ligaments are negligible in the low

frequency wave propagation, which is the case of interest of this

study, while the second one applies with increasing ring thickness

and is corroborated by some numerical simulations in low fre-

quency regime (see Zhu et al. (2015), Fig. 6). A simple Lagrangian

model is formulated, which allows the determination of dispersive

elastic waves and provides a simple evaluation and a comparison

of the effects of the chirality with those of the local resonators.

A further issue concerns the formulation of a homogenized

continuum model equivalent to the discrete Lagrangian. The ho-

mogenization of beam-lattice models has been tackled by several

authors generally referring to homogeneous micropolar models

(see for reference Bazant and Christensen, 1972; Noor et al., 1978;

Chen et al., 1998; Pradel and Sab, 1998; Forest and Pradel, 2001;

Onk, 2002; Ostoja-Starzewski, 2002; Kumar and McDowell, 2004;

Gonnella and Ruzzene, 2008a,2008b; Bacigalupo and Gambarotta

2014a,2014b). On the other side, the wave propagation analy-

sis through the dynamic homogenization of beam lattices has

been analysed by Suiker et al. (2001); Ostoja-Starzewski (2002);

Gonnella and Ruzzene (2008b); Stefanou et al. (2008); Vasiliev

et al. (2010). Here, the discrete model above described is ho-

mogenized through a generalized energy equivalence criterion,

by considering an approximation of the generalized displacement

field through a second order Taylor expansion according to an

approach proposed by Bazant and Christensen (1972), and ap-

plied by Kumar and McDowell (2004) and Liu et al. (2012). The

equations of motion thus obtained are those of a generalized mi-

cropolar continuum characterized by a generalized displacement

field equipped with six degrees of freedom. It may be shown that

these equations coincide with those derived by substituting the

second order Taylor approximation of the displacement field in

the equation of motion of the discrete model.

In order to investigate the influence of chirality on low fre-

quency band gaps, both hexachiral and tetrachiral beam lattices are

analysed, respectively, and the dispersion functions of the discrete

and of the homogenized model are given, respectively, for several

chiral angles measuring the inclination of the ligaments with re-

spect to the line grid joining the centres of the rings. For both the

lattices, two acoustic modes and four optical modes are identified

and the influence of the dynamic characteristics of the resonator

on those branches is analysed together with some properties of the

band structure. The validity limits of the micropolar model with

respect to the dispersion functions are assessed by comparing the

dispersion curves of this model in the irreducible Brillouin domain

with those obtained by the discrete model, the latter ones being

exact within the assumptions of the proposed simplified model.

2. Chiral lattice with local resonators: a simplified model

The beam-lattices shown in Fig. 1 are based on the hexachiral

and tetrachiral periodic cells shown in Fig. 2, respectively. Each cell

having size a is made up of a ring with mean radius r and n (= 4,6)

slender ligaments of length l, section width t and unit thickness,

rigidly connected to the rings. The inclination of each ligament is

denoted by the angle β with respect to the lines connecting the

centres of the rings. A heavy disk with external radius R shown

in Fig. 2 (in dark grey), is located inside the ring through a soft

elastic annulus (in yellow). This inclusion plays the role of low-

frequency resonator. Increasing the angleβ , a chiral microstructure

with auxetic behaviour is obtained up to the condition in which

the ligaments are tangent to the ring, when the angle takes the

value βm = arc sin( 2r
a ). This geometry allows considering separately

the effects of both the chiral microstructure and the local resonator

on the acoustic behaviour of the beam lattice. For β → 0 the mi-

crostructure is no longer chiral, while for R → 0 the resonator dis-

appears. It follows that the independent geometric parameters of

the model are: a, r, R, t and β . The hexachiral lattice is transversely

isotropic while the tetrachiral material belongs to the tetragonal

system (see Bacigalupo and Gambarotta, 2014a,2014b).

To obtain a simplified dynamic model (compare with Liu et al.,

2011; Zhu et al., 2015) the rings (see Liu et al., 2012) and the disc

of the resonators are assumed rigid. The inertia of the elastic soft

coating and of the ligaments is ignored, the latter being negligi-

ble in the low frequency wave propagation, which is the condi-

tion considered in the present study. The Young modulus of the

ligaments is denoted by Es, while the rings have mass densityρs,

so that the translational and the rotatory inertia of the rings are

M1 = 2πρsrt and J1 = M1r2, respectively. The soft elastic coating

inside the resonator has Young’s modulus Ea and Poisson’s ratio

νa. The mass density of the internal resonator is denoted by ρa,

so that its translational and rotatory inertia are M2 = πρaR2 and

J2 = 1
2 M2R2, respectively.

The motion of the rigid ring is denoted by the displacement

vector u and the rotation φ, respectively, while the motion of the
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