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a b s t r a c t

Computational aspects of the phase field simulations of dislocation nucleation and evolution are addressed.

The complete system of equations for the coupled phase field approach to dislocation nucleation and

evolution and nonlinear mechanics for large strains is formulated. Analytical solutions for a stationary

and propagating single dislocation, dislocation velocity, core energy, and core width are found. Dislocation

parameters for nickel are identified based on existing molecular dynamics simulations. In contrast to all

previous efforts that are based on the spectral approach, finite element method (FEM) is utilized, which

allowed us to treat large strain problems and non-periodic boundary conditions. The single dislocation order

parameter profile and the stationary distance between two neighboring dislocations at a semicoherent

sharp austenite–martensite interface are in perfect agreement with analytical expressions. The main focus

is on proving that the new points of the developed theory can be confirmed in simulations, including

possibility of obtaining the desired dislocation height for aligned and inclined dislocations, eliminating

spurious stresses, resolving dislocation cores and interaction between cores of different dislocations. Mesh

independence of the solutions is demonstrated and the effect of approximating finite element polyno-

mials is analyzed, exhibiting possibility of significant numerical errors when special care is not taken of.

Problems of nucleation and evolution of multiple dislocations along the single and multiple slip systems

near martensitic lath, and along the sharp austenite –martensite interface, the activity of dislocations

with two different orientations in a nanograined material under shear and pressure, and the interaction

between two intersecting dislocation systems are studied. Surface-modified partial dislocation was revealed.

These problems represent the first step in the future study of interaction of phase transformation and

dislocations.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Dislocational plasticity has been widely studied using continuum

theories, see the recent papers Cui et al. (2014); Engels et al. (2012);

Fan et al. (2011); Huang et al. (2012); Li et al. (2014); Liu et al. (2011);

Öztop et al. (2013); Xiong et al. (2014); Yanilkin et al. (2014). At

the nanoscale, phase field theories for dislocations are broadly used

for modeling plasticity (Hu and Chen, 2001, 2002; Hu et al., 2004;

Hunter et al., 2011, 2010; Jin and Khachaturyan, 2001; Koslowski,

2007; Koslowski et al., 2002; Koslowski and Ortiz, 2004; Kundin et al.,

2011; Lei and Koslowski, 2011; Rodney et al., 2003; Shen and Wang,

2004; Vorontsov et al., 2004; Wang et al., 2001a, 2001b, 2001c, 2003,
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Wang and Li, 2010). Quite sophisticated and physically interesting

and important problems are solved, increasing our understanding

of plasticity. It is surprising, however, that traditionally in computa-

tional mechanics studies on the accuracy and mesh-sensitivity of nu-

merical solutions are almost absent. Thus, it is mentioned in Shen and

Wang (2004) that in order to obtain a continuous profile of the order

parameter for a dislocation within a core, the grid size should be 0.1

of the interplanar distance. However, such a fine grid has practically

never been used in simulations. In Hu et al. (2004) the accuracy of the

stress distribution due to a single dislocation and ways to avoid sig-

nificant oscillations were considered, with a grid size which was 10

times larger than the Burgers vector. Thus, there was no possibility to

resolve the dislocation core and stresses were away from the disloca-

tion core, i.e., long-range stresses. In the most practical, larger-scale

simulations (Jin and Khachaturyan, 2001; Wang et al., 2001b, 2003),

the grid size is even 100 times of the interplanar distance.
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Mesh dependence of the solutions was not studied because it was

assumed in Hu et al. (2004); Jin and Khachaturyan (2001); Shen and

Wang (2004); Wang et al. (2001b, 2003) that the dislocation height is

equal to the mesh size, i.e., the dislocation height is mesh-dependent

and non-objective by definition. As it was discussed in Levitas and

Javanbakht (2012, 2015), this assumption is made because the dislo-

cation height was not defined by a theory and the system of equa-

tions is ill-posed. Traditionally, such formulations are inadmissible in

computational mechanics. For similar problems on shear band local-

ization in classical plasticity, a huge literature exists and the problem

is regularized using a viscoplastic (e.g., Perzyna (1994)) or (in most

cases) a gradient-type regularization (see, e.g., Dietsche et al. (1993);

Pamin and De Borst (1995)). This led, in particular, to a significant

progress in gradient plasticity. Similar efforts are lacking in the phase

field simulations of dislocations as well. As we will show below, dis-

locations are not localized within a single intergrid band, rather they

produce bands with a height of 1 to 10 and more mesh sizes. This

can be interpreted as 1 to 10 dislocations in the neighboring paral-

lel planes, but this is unrealistic. Even if the dislocation was localized

within one finite element, the interface � with the normal n between

the dislocation band and the rest of the crystal has theoretically zero

width. As we will demonstrate below, this leads to high oscillating

internal shear stresses at the interface � which have two opposite ef-

fects. First, the huge artificial stresses can exceed the critical stress for

dislocations and lead to an artificial nucleation of new dislocations.

Second, these artificial stresses generate an artificial elastic energy at

the interface, which suppresses dislocation motion. Such stresses and

a way to suppress them have not been studied yet. Also, there is no

description in the literature on how to handle dislocations inclined

with respect to the grid.

When using a regular grid, the localization of a dislocation band

within one intergrid space leads to a small number of points to re-

solve the dislocation core profile along the slip direction, which re-

sults to wrong values for the width and the energy. In addition, a

rough discretization leads to creating an artificial athermal threshold

Hu et al. (2004), which may arrest dislocations.

Another source of inaccuracy is related to the fact that when the

Burgers vector is linearly dependent on the order parameters η (like

in Hu and Chen (2001 2002); Hu et al. (2004); Hunter et al. (2011);

2010); Jin and Khachaturyan (2001); Koslowski (2007); Koslowski

et al. (2002); Koslowski and Ortiz (2004); Kundin et al. (2011); Lei

and Koslowski (2011); Rodney et al. (2003); Shen and Wang (2004);

Vorontsov et al. (2004); Wang et al. (2001a, 2001b, 2001c, 2003);

Wang and Li (2010)), the thermodynamically equilibrium value of

η, and consequently the equilibrium Burgers vector, depend on the

stress tensor σ . This was found in Levitas et al. (2003) analytically

and then studied in Hu et al. (2004) numerically. It was demon-

strated in Hu et al. (2004) that the stress-dependent Burgers vector

changes the stress field of a dislocation and consequently its velocity.

Nonlinear dependencies for the Burgers vector, which lead to con-

stant, stress-independent equilibrium Burgers vector have been sug-

gested in Hu et al. (2004); Levitas and Javanbakht (2015); Levitas et al.

(2003). However, as it was shown in Levitas and Javanbakht (2015),

the nonlinear dependence in Hu et al. (2004) leads to an unrealistic

equilibrium stress - order parameter curve, which requires infinite

stresses for the lattice instability (theoretical strength). In general,

the local equilibrium stress-strain curve and the theoretical shear

strength were not analyzed for the previous models, until it was done

in Levitas and Javanbakht (2015); Levitas et al. (2003). Note that simi-

lar analysis of the local equilibrium stress-strain curve for martensitic

phase transformations has been done in Levitas and Preston (2002a,

2002b).

All previous phase field simulations (e.g., in Hu et al. (2004); Jin

and Khachaturyan (2001); Koslowski et al. (2002); Koslowski and Or-

tiz (2004); Shen and Wang (2004); Wang et al. (2001b, 2003)); Wang

and Li (2010)) were based on small strain (i.e., < 0.1) theory, which

allowed one to use effective spectral methods for the problem solu-

tion combined with Khachaturyan–Shatalov microelasticity theory.

This also implied periodic boundary conditions. At the same time, lo-

cal shear strain for n dislocations is huge and is of the order of mag-

nitude of n.

In the papers Levitas and Javanbakht (2012, 2015), the phase field

equations for dislocation nucleation and evolution at the nanoscale

were derived from thermodynamics laws for large strains and were

simplified for small strains as well. The Ginzburg–Landau equations

are obtained as the linear kinetic relations between the rate of change

of the order parameters and the conjugate thermodynamic driving

forces. Several main shortcomings of the previous phase field stud-

ies have been resolved. In particular, large strain kinematics is in-

troduced and it is done in a way consistent with phenomenological

crystal plasticity. Also, expression for the Helmholtz free energy is

advanced in the following directions:

(a) it reproduces the desired, mesh-independent height of dislo-

cation bands for any slip system orientation and prevents dis-

location widening;

(b) it excludes the localization of dislocation within a band of a

smaller height than the prescribed one but does not produce

artificial interface energy;

(c) it penalizes the interaction of different dislocations at the same

point;

(d) it allows us to generate desired lattice instability conditions

and a stress—order parameter curve, as well as to obtain stress-

independent equilibrium Burgers vector and to avoid artificial

dissipation during elastic deformation.

Non-periodic boundary conditions for dislocations are intro-

duced, which include the change of the surface energy due to the exit

of dislocations from the crystal.

All the above theoretical results make it possible to significantly

advance the computational mechanics aspect and the strictness and

the accuracy of the simulation of dislocation behavior. This is the

main goal of the current paper. The main focus is on proving that the

new points of the developed theory can be confirmed in simulations,

including the possibility of obtaining the desired dislocation height

for aligned and inclined dislocations, eliminating spurious stresses,

resolving dislocation cores and the interaction between cores of dif-

ferent dislocations.

First, analytical solutions for a stationary and propagating sin-

gle dislocation, dislocation velocity, core energy, and core width are

found. Dislocation parameters for nickel are identified based on the

results of molecular dynamics simulations in Lee et al. (2011). They

also include the effect of the gradient term along the dislocation

height. In contrast to all previous efforts that utilize the spectral ap-

proach, FEM is applied, which allowed us to treat large strain prob-

lems and non-periodic boundary conditions. In particular, free ex-

ternal surface is considered, for which the boundary condition looks

different than for phase transformations. The single dislocation order

parameter profile and the stationary distance between two neighbor-

ing dislocations at a semicoherent sharp austenite–martensite inter-

face are in perfect agreement with analytical expressions. Note that

the last problem has a shear strain equal to 3, i.e., the large strain for-

mulation is tested to some extend as well. For a system of multiple

parallel dislocations, it is shown that one can indeed obtain an ob-

jective solution with the prescribed dislocation height and eliminate

artificial stresses at the boundary between the dislocation band and

the rest of the crystal or between different dislocation bands. For non-

optimal meshes and types of finite elements, solutions may differ sig-

nificantly from the objective (correct) ones, with different numbers of

dislocations, averaged stresses, and huge spurious oscillating stresses

between the dislocation band and the rest of the crystal or be-

tween different dislocation bands. For models without the prescribed

dislocation height, the solution is strongly mesh-dependent, with
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