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a b s t r a c t

We report a quantitative framework to guide the braiding pattern design of multilayer helical assemblies. We

optimize the structural pattern so as to maximize the construction’s resistance to axial loads and concurrently

minimize its torsional propensity. To that extent, we consider helical assemblies comprised of up to five

layers, for which we identify favorable structural patterns, providing a database that covers most practical

applications.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Helical assemblies are load carrying structures with applications

ranging from ropes and electricity power transfer cables to tissue

engineering scaffolds (Papailiou 1997; Laurent et al., 2014). While a

large number of studies has been devoted to the analysis of their me-

chanical properties, the selection of the structural arrangement it-

self has largely been disregarded, despite its rather detrimental im-

pact on both the operational mechanical response and the structure’s

long term performance. Whereas an experimental retrieval of opti-

mal structural patterns is infeasible, numerical simulations provide

an ideal test-bed for this purpose.

A thorough description of the geometric properties of single, dou-

ble and triple helical bodies has been provided by Lee (Lee, 1991), an

analysis of primal use for the understanding of the structuring of heli-

cal assemblies. Helical assemblies are commonly encountered as sub-

structures of larger constructions. Cable-bridge structures are char-

acteristic examples of this kind, for which the cable tension level and

placement controls the response of the overall construction (Janjic

et al., 2003). Furthermore, helical assemblies are used in electric

power transfer, with their design playing a crucial role in the min-

imization of power transfer losses (Sullivan, 1999). Their extensive

use necessitated the characterization of their mechanical response,

as the analytical and numerical modeling schemes bibliography indi-

cates, primarily in the context of engineering cables.

Using analytical modeling, Lanteigne provided closed-formed so-

lutions for the quantification of the mechanical response of helically
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armored cables upon axial, torsional and bending loads (Lanteigne,

1985). Accordingly, Raoof et al. developed simplified expressions for

the stiffness coefficients of locked-coil strands (Raoof and Kraincanic,

1998), while Utting and Jones provided a large set of experimen-

tal data on single and three layer strands accompanied by closed-

form stiffness expressions (Utting and Jones 1987a, 1987b). Further-

more, Costello conducted extensive experimental studies to charac-

terize the mechanical response of wire ropes, complementing the ex-

perimental analysis with analytical, closed-form expressions for the

structural response (Costello, 1990). Moreover, Sathikh et al. elabo-

rated stiffness matrix coefficients for the axial and torsional strain

response of helical bodies that hold symmetry considerations of

the stiffness matrix (Sathikh et al., 1996), while Karathanasopou-

los et al. extended the modeling approach to account for the ef-

fect of radial strain with contributions arising from the axial, tor-

sional and bending helix cross section stiffness taken into account

(Karathanasopoulos and Kress, 2015). Finally, the mechanical re-

sponse of double-helix multi strand constructions to axial and tor-

sional loads was analyzed, under the assumption that their con-

stituents follow a fiber type response (Elata et al. 2004; Usabiaga and

Pagalday 2008).

On the numerical modeling side, Jiang et al. estimated the struc-

tural properties of two layer strands using a reduced computational

model that took advantage of the structural and loading symmetry

(Jiang and Henshall 2000). Similarly, Stanova et al. worked on the ax-

ial stiffness properties of three layered strands (Stanova et al., 2011). A

study on large spiral cables axial load-strain curves and failure loads

was provided by Judge et al., the analysis based on three dimensional

finite element modeling (Judge et al., 2012).

More recently, helical assembly applications that go beyond the

context of engineering strands have come to the fore. In particular,
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Fig. 1. Helical body geometry.

in the field of biomechanical engineering, helically braided scaffolds

have been used for the restoration of tendon and ligament tissue

(Laurent et al., 2014). Moreover, the development of artificial and bi-

ological material based applications such as nanotube helical ropes,

has asked for a deeper understanding of their mechanical response,

with bottom-up structural response models appearing in the litera-

ture (Zhao et al., 2014).

A significant number of studies have been devoted to assess the

impact of loading bounds on the endurance and long-term function-

ality of helical assemblies. Argatov worked on the effect of inter-

wire contact deformation of single layer rope strands making use of

asymptotic modeling (Argatov, 2011). Alani et al. studied the corre-

lation between the mean axial loading and the endurance limits of

helical assemblies, to point out substantial variations associated with

the helix angle selection of the individual layers (Alani and Raoof,

1997). Giglio et al. (Giglio and Manes, 2005) derived a linkage be-

tween the fatigue life and the stress state of ropes that are subject to

axial and bending loads, suggesting that their bounds are directly re-

lated to fretting damage phenomena (Hobbs and Raoof, 1994). Finally,

Chaplin performed a number of experimental studies that quantified

the effect of different loading patterns on the life endurance of spiral

ropes, illustrating the role of torsional loads as a failure mechanism

(Chaplin, 2008).

The current work is structured as follows: We describe the engi-

neering of a broad spectrum of helical assembly constructions com-

prised of up to five layers (Section 2). Amongst all possible structures,

we identify torsionally counterbalanced arrangements of high axial

stiffness for two, three, four and five layer constructions (Section 3,

Appendix A). We comment on the retrieved optimal braiding patterns

and conclude in Section 4.

2. Helical assembly modeling and optimization methodology

2.1. Helix geometry

The geometry of the helical assembly is characterized by the in-

dividual geometric properties of its constituents. A helix can be de-

scribed through the following equation, formed with the use of the

Serret–Frenet basis:

X(xn, xb, s) =

⎧⎨
⎩

X

Y

Z

⎫⎬
⎭ = R(s) + xnn + xbb, −r ≤ xn, xb ≤ r (1)

where r denotes the radius of the helix cross section and R(s) the cen-

terline position vector of the helical body defined as follows:

R(s) =

⎧⎨
⎩

α cos ϕ

α sin ϕ

bϕ

⎫⎬
⎭, ϕ = s

γ
, γ =

√
α2 + b2,

b = α tan θ, h = 2πb (2)

In Eq. 2, a stands for the helix centerline position and b for the

rise along the central axis of the helix per unit angular evolution ϕ
upon which the helix height h for a period evolution is computed.

The Serret–Frenet local base vectors are defined as follows:
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⎣− cos ϕ

− sin ϕ

0

⎤
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Fig. 1 schematically depicts the introduced parametrization.

2.2. Multilayer helical assembly parameter search space

We subsequently define the parameter space of the helical assem-

blies. For each helical layer, the cross section radius of the individual

helical bodies ri is allowed to vary by a maximum of 50% with re-

spect to the radius of the core of the structure rc, thus 0.5 ≤ ri/rc ≤
1.5. The layer centerline position of each layer i, named as ai is de-

fined as a function of the radius of all helical bodies in the different

layers j,
{

r j

}i

j=1
and of the core radius rc, as schematically illustrated

in Fig. 2. The helix angle of each layer θ i is accordingly considered to

vary within [70° 85°]. The angle selection allows for the constituents

of the assembly to be primarily subject to normal rather than shear-

ing stresses, while it guaranties a high axial strength for the overall

construction. Furthermore, we allow for different layer orientation

Fig. 2. Multilayer helical assembly geometry.
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