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a b s t r a c t

This paper presents a study on adhesive contact between a periodically grooved surface and a flat surface.

The effect of interfacial adhesion is included through the use of the Maugis–Dugdale adhesive contact model.

The contact problem is reduced to a singular integral equation with Hilbert kernel for a height of the interface

gaps and a system of two transcendental equations for widths of the gaps and the adhesion zones. Solutions

are obtained for three different equilibrium states of the contact pair involving loading and unloading. The

effects of the dimensions of the initial grooves and the adhesive stress on dimensions of the interface gaps,

pull-off stress and adhesion hysteresis are investigated.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

The surfaces of components in modern devices have very various

shapes that are often created artificially by special processes (Etsion,

2005; Stepien, 2011). In particular, grooves and dimples are the most

common geometric features used for modification of smooth sur-

faces. Many studies have shown that surface roughness affects the ad-

hesion (Fuller and Tabor, 1975; Li and Kim, 2000; Persson, 2002; Pers-

son and Tosatti, 2001; Sviridenok et al., 1990; Zhao et al., 2003). One

effective approach for controlling adhesion between bodies is to cre-

ate regular microrelief of contacting surfaces through micro texturing

techniques. This approach is especially beneficial for MEMS/NEMS

devices (Komvopoulos, 2003) that normally have smooth surfaces

and are subjected to small applied forces.

The theoretical investigation of adhesive interaction between sur-

faces having regular microrelief is restricted to contact between a

spherical indenter and a wavy surface (Guduru, 2007; Jin et al., 2011;

Waters et al., 2009) and contact between semi-infinite solids with

wavy surfaces (Adams, 2004; Carbone and Mangialardi, 2004; Gory-

acheva and Makhovskaya, 2010, 2011; Johnson, 1995; Wu, 2011) and

rough surfaces (Hui et al., 2001; Zilberman and Persson, 2002) when

the roughness is described by some periodic function.

In a previous paper (Chumak et al., 2014), a solution was given

for the problem of adhesive contact between a half-space with a sin-

gle surface micro-groove and a flat half-space. The effect of adhe-

sion was taken into account by utilizing the Maugis–Dugdale model
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(Maugis, 1992). The solution covers both the case of incomplete (par-

tial) contact and the case of complete (full) contact.

In this paper, based on the Maugis–Dugdale model, we will in-

vestigate the adhesive contact between a periodically grooved half-

space and a flat half-space. The contact of solids with such surface

texture is characterized by the presence of a periodic array of gaps at

the interface. The solution of the corresponding contact problem can

be constructed by means similar to those used in the previous paper

(Chumak et al., 2014). Therefore, we give here only the essentials.

2. Statement of the problem

Fig. 1 shows two half-spaces prior to loading. It is assumed that

the solids are made from isotropic and dissimilar materials with Pois-

son’s ratios ν1, ν2 and shear moduli μ1, μ2. The surface of the lower

half-space S1 is perfectly flat, while the surface of the upper half-

space S2 has regular texture in the form of periodically arranged

grooves. The width of each groove is equal to 2b, and its shape is de-

scribed by the smooth even function r(x) (r( ± b) = 0, r′( ± b) = 0).

The grooves are spaced with the period d (d > 2b). The contact prob-

lem is posed in the framework of linear elasticity, assuming plane

strain conditions.

The solids are pressed together by a uniform pressure p applied

at infinity (Fig. 2). Due to the regular surface texture of the upper

solid, the interface consists of a periodic array of gaps and a periodic

array of contacts. The interface is supposed to be frictionless. The ad-

hesion between the surfaces is modeled by a tensile constant stress

σ 0 acting in the regions ( − a + md, −c + md) and (c + md, a + md),

m = 0,±1, ±2, . . . , where the interface gaps are positive but less than

a prescribed value h0 (the Maugis–Dugdale model (Maugis, 1992)).

For larger separations, the surface forces are zero. The adhesive stress
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Fig. 1. The solids prior to loading. The surface of the lower half-space is flat. The sur-

face of the upper half-space has a periodic array of grooves.

Fig. 2. Сontact between the solids within the period [−d/2, d/2]: the constant adhe-

sive stress σ 0 acts in the regions ( − a,−c) and (c, a). In the periods [−d/2 + md, d/2 +
md], m = ±1,±2, . . . , the contact model is the same.

σ 0 is the maximum adhesion force approximately equal to 1.03γ /ɛ
(γ is the work of adhesion, and ɛ is the equilibrium distance), and h0

≈ 0.97ɛ. A height h(x) and a width 2a of the gaps are unknown and

depend on surface interaction as well as the applied load.

In addition, we assume that the maximum height of each groove

is small in comparison to its width. This assumption justifies the ap-

proach in which the boundary conditions are not imposed on the

curved surfaces but, as customary for contact problems in linear elas-

ticity, written rather at the interface y = 0.

Because of the periodicity of all field quantities, the boundary con-

ditions need only be considered in the interval −d/2 ≤ x ≤ d/2. The

boundary conditions at the interface (y = 0) are:

σ−
yy(x, 0) = σ+

yy(x, 0), σ−
xy(x, 0) = σ+

xy(x, 0) = 0, |x| ≤ d/2, (1)

σ+
yy(x, 0) = σ0, c < |x| < a, σ+

yy(x, 0) = 0, |x| ≤ c; (2)

u+
y (x, 0) = u−

y (x, 0) −
{

r(x), a < |x| ≤ b

0, b ≤ |x| ≤ d/2
. (3)

The boundary conditions at infinity (|y| = ∞) are:

σyy = −p, σxy = 0. (4)

Here, the superscripts + and − denote the boundary values of the

function on x-axis in the upper and lower solid, respectively; σ xy(x,

y) and σ yy(x, y) are stress components; and uy(x, y) is a normal dis-

placement.

3. Solution to the problem

The initial stages of the solution are similar with Chumak et al.

(2014) and will be omitted here in the interests of brevity. The

stresses and displacements in the both solids are represented in

terms of the height of the grooves r(x) and the height of the gaps h(x),

and the problem is reduced to the following singular integral equa-

tion (SIE) for h′(x):

1

π

∫ ∞

−∞

h′(t)

t − x
dt = 1

π

∫ ∞

−∞

r′(t)

t − x
dt + K

2
(p + σ(x)), |x| < ∞, (5)

where h(x) = u+
y − u−

y + r(x); K = 2(1 − ν1)/μ1 + 2(1 − ν2)/μ2;

σ(x) =
{
σ0, c< |x−md|<a
0, |x−md| ≤c

, m = 0,±1,±2, . . . ; h′(t) represents the

derivative of h(t) with respect to t.

Taking advantage of the periodicity (Schmueser and Comninou,

1979), SIE (5) can be rewritten as

1

d

∫ a

−a

h′(t)cot
π(t − x)

d
dt

= 1

d

∫ b

−b

r′(t)cot
π(t − x)

d
dt + K

2
(p + σ(x)), |x| < a. (6)

Using the change of variables ξ = tan (πx/d), η = tan (πt/d), α =
tan (πa/d), β = tan (πb/d), χ = tan (πc/d), we reduce SIE (6) with

Hilbert kernel to SIE (7) with Cauchy type kernel:

1

π

∫ α

−α

h′(η)

η − ξ
dη = R(ξ) + dK

2π

p + σ(ξ)

ξ 2 + 1
, |ξ | < α (7)

where R(ξ) = 1
π

∫ β
−β

r′(η)
η−ξ

dη,σ (ξ) =
{
σ0, χ< |ξ |<α
0, |ξ | ≤χ

.

The function h(ξ ) satisfies the conditions (Chumak et al., 2014)

h( ± α) = 0, h′( ± α) = 0. (8)

In addition, the following condition is imposed on the normal

stresses σ±
yy(ξ , 0) in the contact regions:

σ±
yy(ξ , 0) ≤ σ0, |ξ | ≥ α, (9)

where the normal stresses σ yy are defined by the expression

σ±
yy(ξ , 0) =

2
(
1 + ξ 2

)
dK

(∫ α

−α

h′(η)

η − ξ
dη − πR(ξ)

)
− p. (10)

It is worth noting that SIE (7) for this problem differs from that

in Chumak et al. (2014) only in the second term of their right-hand

sides.

Let us describe the shape of the grooves in the new variables

by the function r(ξ) = r0(1 − ξ 2/β2)3/2 identical to that in Chumak

et al. (2014). For such a function r(ξ ), R(ξ ) is evaluated analytically:

R(ξ) = 3r0

β

(
ξ 2

β2
− 1

2

)
.
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