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a b s t r a c t

A new second-order two-scale (SOTS) analysis finite element algorithm is developed for the axisymmetric

and spherical symmetric elastic problems with small periodic configurations. The axisymmetric structure

considered is periodic in both radial and axial directions and homogeneous in circumferential direction, and

the spherical symmetric structure is only periodic in radial direction and homogeneous in other two direc-

tions. The SOTS asymptotic expansions for the space problem, plane axisymmetric problem, and spherical

symmetric problem are presented, and the main feature is that the anisotropic material is obtained by the

homogenization. The analytical expressions of the cell functions and homogenized solutions for plane ax-

isymmetric and spherical symmetric problems are obtained, and the error estimations of the expansions are

established. The second-order asymptotic analysis finite-element algorithm is presented and the numeri-

cal examples are solved including the hollow cylinder, rotating disk and hollow sphere composed of peri-

odic composite materials. The computational results demonstrate the effectiveness and accuracy of the SOTS

asymptotic analysis algorithm, and the converging behavior of the asymptotic analysis algorithm agrees well

with the theoretical prediction. It is also indicated that the stress distributions can be correctly computed

only by adding the second-order correctors.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

With the rapid development of aeronautic and aerospace engi-

neering, composite materials are widely used in the engineering

because of the good thermal stability, high specific stiffness and

strength. The composites are mostly heterogeneous with rapidly

varying material coefficients. Success in practical application of com-

posites largely depends on the possibility to predict their properties

and behaviors through the development of appropriate models.

The evaluation of the thermal and mechanical behaviors for the

composite materials involves many basic scientific principles, in-

cluding multi-physical fields, multi-scale correlation models, and

high-performance multi-scale algorithms. In the recent decades, the

researches on the multi-scale homogenization methods have at-

tracted the attention of many authors. Homogenization approaches

allow the researches to reduce the governing equations with rapidly

varying coefficients to the equations for media with effective prop-

erties. It is convenient as it buries micro structures into coefficients
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and then the computations can be performed on the macro scale.

Moreover, by proper correctors, the solutions with oscillating behav-

ior can be reproduced effectively. Mathematically, Bensoussan et al.

(1978) adopted the idea of asymptotic expansion and homogeniza-

tion method, and then various theoretical analysis and practical ap-

plications are studied by Lions (1981), Oleinik et al. (1992), Allaire

(1992), Jikov et al. (1994), and Cioranescu and Donato (1999), in-

cluding homogenization in perforated domains(Oleinik et al., 1992;

Cioranescu and Saint Jean Paulin, 1997), large deformation prob-

lem(Takano et al., 2000), and conductive- ratiative coupled heat

transfer problem(Allaire and Ganaoui, 2009). Based on this research,

various multi-scale methods have been proposed(Hou and Wu, 1997;

E and Engquist, 2003), but only the first-order asymptotic expansions

are considered. Cui and Cao (1998) introduced the Second-Order

Two-Scale (SOTS) analysis method to predict physical and mechan-

ical behaviors of composite and perforated materials more accurately

by considering the second-order correctors and corresponding finite

element method is established (see, for instance, Chen and Cui, 2004;

Cao et al., 2002; Cao and Cui, 2004; Cao, 2006). The SOTS method

is extended to heat conduction (Su et al., 2010), linear elasticity (Su

et al., 2011) problems with quasi-periodic structures, and the thermo-

elastic problem is studied by Ma and Cui (2013). Wang and Cui

(2014) developed the SOTS method for bending behavior analysis of
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composite plate. The second-order asymptotic solutions for the in-

tegrated heat transfer problems with conduction, convection and ra-

diation in periodic composite or porous materials are discussed by

Zhang and Cui (2012), Yang et al. (2012), Ma and Cui (2013) and Yang

et al. (2014). The multi-scale second-order solutions for the quasi-

static and dynamic thermo-elastic problems are obtained by Feng and

Cui (2004) and Wan (2007). By using the statistical SOTS method, the

mechanical properties of materials with random distribution grains

is studied by Li and Cui (2005) and the computation of the dynamic

thermo-elastic behaviors for dynamic thermo-mechanical coupled

response of random particulate composites is carried out by Yang

et al. (2014).

For most literatures, the numerical simulations were often tested

and carried out in the regular domain, and did not extend to more

general and arbitrary domains. As we all known, the structures made

of composites are not always regular, and the axisymmetric and

spherical symmetric structures are often used in the engineering,

such as the axisymmetric spacecraft, cylindrical pressure vessel, cul-

vert pipe, tube of the artillery, or the high pressure sphere tank.

Multilayered or periodic composite configurations are often utilized

to increase the bearing capacity of the structure. To make the asymp-

totic analysis for this kind of structure, we should generalize the

asymptotic analysis method to the elastic problems in cylindrical and

spherical coordinate. Chatzigeorgiou et al. (2008) studied the homog-

enization for the hollow cylinder with discontinuous properties in

the cylindrical coordinate system but the first or higher order correc-

tors of the displacement were not discussed. In this paper, we focus

on the elastic problems for the axisymmetric and spherical symmet-

ric structures with periodic configurations and develop the second-

order two-scale asymptotic expansions to simulate the fluctuating

behaviors of the displacement and stress fields. For the purpose, this

paper is outlined as follows. The elastic problems for the axisymmet-

ric and spherical structures are presented and the equivalent com-

pact formulations are given for the convenience of the second-order

asymptotic analysis in Section 2. The second-order asymptotic expan-

sions of the displacement are formally defined, the explicit expres-

sions for the cell functions and homogenized solutions are obtained

and the error estimations for the plane axisymmetric and spherical

symmetric problems are discussed in Section 3. The finite element

procedure is presented in Section 4. Several numerical examples are

illustrated in Section 5, followed by the conclusions and expectation

for the future work in Section 6. Throughout this paper, convention

of summation on repeated indices is adopted and the common nota-

tions of Sobolev spaces are used for the analysis. The letters in bold

represent the matrix or vector functions in the formulation. By O(ɛk),

k ∈ N, we denote that there exists a constant c independent of ɛ and

|O(ɛk)| ≤ cɛk.

2. Governing equations

2.1. Axisymmetric elastic problem

In the three-dimensional axisymmetric domain � with symmet-

ric plane A, set the cylinder coordinate as (x1, θ , x2) instead of the con-

ventional (r, θ , z) for the convenience of the second-order asymptotic

analysis. Consider the composite structures shown in Fig. 1. The hol-

low cylinder in Fig. 1(a) is multilayered with periodic piecewise con-

stant elastic coefficients while there are periodic distributions in both

radial and axial direction in the cylinder in Fig. 1(b), both of which are

homogeneous in the θ direction.

The linear elastic problem in the axisymmetric plane can be for-

mulated, as follows:⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩
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as the radial and axial components, respectively. The superscript

“T” denotes the transpose operator and ɛ is a small parameter related
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Also define the stress tensor σε
i j

and

σ ε
11 = σ ε

1 , σ ε
22 = σ ε

2 , σ ε
21 = σ ε

12.

The constitutive relation can be expressed as

σε = Dεeε,

with the elastic constitutive matrix Dɛ

Dε =

⎡
⎢⎢⎣

λε + 2με λε λε 0

λε λε + 2με λε 0

λε λε λε + 2με 0

0 0 0 με

⎤
⎥⎥⎦. (2)

λɛ and μɛ are the Lamé coefficients of the material expressed by

Young’s modulus Eɛ and Possion’s ratio νɛ as

λε = Eενε

(1 − 2νε)(1 + νε)
, με = Eε

2(1 + νε)
. (3)

Fig. 1. Axisymmetric composite structures.
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