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In this paper, an elasticity solution for a two-dimensional (2D) plane beam is derived and it is shown that

the solution provides a complete framework for exact one-dimensional (1D) presentations of plane beams.

First, an interior solution representing a general state of any 2D linearly elastic isotropic plane beam under

a uniform distributed load is obtained by employing a stress function approach. The solution excludes the

end effects of the beam and is valid sufficiently far away from the beam boundaries. Then, three kinematic

variables defined at the central axis of the plane beam are formed from the 2D displacement field. Using these

central axis variables, the 2D interior elasticity solution is presented in a novel manner in the form of a 1D

beam theory. By applying the Clapeyron’s theorem, it is shown that the stresses acting as surface tractions on

the lateral end surfaces of the interior beam need to be taken into account in all energy-based considerations

related to the interior beam. Finally, exact 1D rod and beam finite elements are developed by the aid of the

axis variables from the 2D solution.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Elasticity solutions for plane beams are of fundamental interest

in mechanical sciences. An important application of such solutions is

the benchmarking of beam theories based on various kinematic as-

sumptions. Two-dimensional (2D) interior elasticity solutions can be

easily obtained, for example, for an end-loaded cantilever and a uni-

formly loaded simply-supported beam by employing the Airy stress

function (e.g., Timoshenko and Goodier, 1970).

An interior solution excludes, by virtue of the Saint Venant’s prin-

ciple, the end effects that decay with distance from the ends of a

beam. In the calculation of displacements, constraint conditions are

applied at the beam supports to prevent it from moving as a rigid

body. These constraints for the 2D elasticity solution can be chosen so

that they correspond to the boundary conditions of, for example, the

Timoshenko beam theory (Timoshenko, 1921). Due to the foregoing, a

2D interior plane stress solution for a plane beam acts as an ideal ref-

erence solution for narrow one-dimensional (1D) shear-deformable

beam models that do not include end effects.

Many beam and plate theories are based on an assumed dis-

placement field similar to the one first used by Vlasov (1957). These

theories are commonly referred to as third-order theories because

third-order polynomials are used in the expansion of the displace-

ment components. For surveys on third-order kinematics and plate
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theories, see the works by Jemielita (1990) and Reddy (1990, 2003).

Two examples of third-order beam theories are the Levinson and the

Reddy–Bickford beams for which the assumed displacement field is

exactly the same (Bickford, 1982; Heyliger and Reddy, 1988; Levinson,

1981; Reddy, 1984). As first shown by Bickford (1982), the Reddy–

Bickford beam exhibits a boundary layer character, that is, the decay-

ing end effects are present in the beam. The Reddy–Bickford theory

is obtained through an energy-based variational formulation, which

results in additional higher-order load resultants in comparison to an

interior elasticity solution. If the higher-order load resultants are ne-

glected, the Levinson theory is obtained.

In this study, a general interior elasticity solution is derived for

a uniformly loaded linearly elastic homogeneous isotropic 2D plane

beam. As the main novelties of the study we find that

• The 2D solution provides the exact third-order kinematics for the

beam and can be presented directly in the form of a conventional

1D beam theory.
• By applying the Clapeyron’s theorem, it is shown that the stresses

acting as surface tractions on the lateral end surfaces of the inte-

rior beam are an intrinsic part of all energy-based considerations.
• The 2D solution can be discretized in order to obtain 1D rod and

beam finite elements, which provide exact 2D interior displace-

ment and stress distributions.

In more detail, the paper is organized as follows. In the introduc-

tory Section 2, a polynomial Airy stress function is used to derive

the interior stress field for a 2D plane beam under a uniform dis-

tributed load. The strains are calculated from the stresses according

to the plane stress condition and the displacements are integrated
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Fig. 1. 2D homogeneous isotropic plane beam with a rectangular cross-section under

a uniform pressure. The load resultants act at an arbitrary cross-section of the beam.

from the strains. In Section 3, three kinematic variables defined at

the central axis of the plane beam are formed from the 2D interior

displacement field. Using these new central axis variables, 1D beam

equations are developed. The total potential energy of the interior

beam and Clapeyron’s theorem are considered. Finally, exact 1D in-

terior rod and flexural beam finite elements are developed from the

2D interior elasticity solution. Conclusions are presented in Section 4.

2. Stress function solution for a plane beam

2.1. Plane beam problem and Airy stress function

Fig. 1 presents a 2D homogeneous isotropic plane beam under a

uniform pressure p. The beam has a rectangular cross-section of con-

stant thickness t and the length and height of the beam are L and h,

respectively. The load resultants N, M and Q stand for the axial force,

bending moment and shear force, respectively. These cross-sectional

load resultants are calculated from the equations

N(x) = t

∫ h/2

−h/2

σx(x, y)dy, M(x) = t

∫ h/2

−h/2

σx(x, y)ydy,

Q(x) = t

∫ h/2

−h/2

τxy(x, y)dy, (1)

which can be used to impose the force and moment boundary condi-

tions at x = ±L/2. The boundary conditions on the upper and lower

surfaces of the beam are

σy(x, h/2) = −p, σy(x,−h/2) = 0, τxy(x,±h/2) = 0. (2)

Note that the boundary conditions are satisfied in a strong (pointwise)

sense on the upper and lower surfaces, whereas at the beam ends the

tractions are not specified at each point but only through the load

resultants and, thus, the boundary conditions are imposed only in a

weak sense (Barber, 2010). In the case of Fig. 1, the replacement of the

true boundary conditions at the beam ends by the statically equiva-

lent weak boundary conditions (load resultants) implies that the ex-

ponentially decaying end effects of the plane beam are neglected by

virtue of the Saint Venant’s principle and only the interior solution

of the beam is under consideration. The interior solution represents

essentially a beam section which has been cut off from a complete

beam far enough from the real lateral boundaries at which the true

boundary conditions could be set. The stresses of the plane beam are

obtained from the equations

σx = ∂2�

∂y2
, σy = ∂2�

∂x2
, τxy = − ∂2�

∂x∂y
, (3)

where �(x, y) is the Airy stress function. Eqs. (3) satisfy the two-

dimensional equilibrium equations. To ensure compatibility, it is re-

quired that the stress function satisfies the biharmonic equation

(Barber, 2010)

∂4�

∂x4
+ 2

∂4�

∂x2∂y2
+ ∂4�

∂y4
= 0. (4)

The solution to the plane beam problem is obtained by finding a solu-

tion of Eq. (4) that satisfies the stress boundary conditions (2) of the

beam.

2.2. Interior stress field of a plane beam

By adapting a general solution procedure outlined by Barber

(2010, chap. 5), we find that the polynomial stress function for the

interior problem of any plane beam under a uniform pressure p (see

Fig. 1) is

�(x, y) = c1y2 + c2y3 + c3xy

(
1 − 4y2

3h2

)

− q

240I

[
5h3x2 + 15h2x2y + 4y3

(
y2 − 5x2

)]
, (5)

where q = pt is the uniform load, I = th3/12 is the second moment of

the cross-sectional area and c1, c2 and c3 are to be solved by the aid

of Eqs. (1). The stresses calculated from Eqs. (3) are

σx = 2c1 + 6c2y − 8c3xy

h2
+ q(3x2y − 2y3)

6I
, (6)

σy = − q

24I
(h3 + 3h2y − 4y3), (7)

τxy = c3

(
4y2

h2
− 1

)
+ qx

2I

(
h2

4
− y2

)
. (8)

Note that the above interior stress distributions are universal, that is,

they are valid for any plane beam under a uniform load since they

are not associated with any particular constraint conditions at the

beam ends. Using Eqs. (6) and (8), the load resultants calculated from

Eqs. (1) are

N = 2Ac1, M = 6Ic2 − 2

3
Ac3x + q

2

(
x2 − h2

10

)
, Q = qx − 2

3
Ac3,

(9)

where A = ht is the area of the cross-section. As a first step towards

presenting the solution in the form of a 1D beam theory, it can be

easily verified that the following global equilibrium equations, which

can also be obtained by integrating the 2D stress equilibrium equa-

tions, hold for the load resultants (9)

∂N

∂x
= 0,

∂M

∂x
= Q,

∂Q

∂x
= q. (10)

We note that Schneider and Kienzler (2015) arrived at the same equi-

librium equations (10) through their recent exact 3D representation

of linear elasticity. When c1, c2 and c3 are solved from Eqs. (9) and

substituted into Eqs. (6) and (8), we obtain

σx = N

A
+ My

I
+ 3qy

5A
− qy3

3I
, (11)

τxy = Q

8I
(h2 − 4y2). (12)

The stress distribution of Eq. (11) has been called by Rehfield and

Murthy (1982) the refined (nonclassical) axial stress distribution in

the context of their beam theory. More complicated distributed loads

lead to different additional load terms in the stresses. By setting

q = 0, Eqs. (11) and (12) give the stress distribution of the classical

Euler–Bernoulli beam.

2.3. Example – Simply-supported beam

As an example, let us consider a simply-supported beam under

a constant uniform load q. In a setting according to Fig. 1, the axial

force, bending moment and shear force along the beam are given by

N(x) = 0, M(x) = q(x2/2 − L2/8), Q(x) = qx, (13)

respectively. We find that the interior stress state in the beam calcu-

lated from Eqs. (7) and (11)–(13) is the same as the one found in any
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