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a b s t r a c t

It is previously known that under inflation alone a spherical rubber membrane balloon may bifurcate into a

pear shape when the tension in the membrane reaches a maximum, but the existence of such a maximum

depends on the material model used: the maximum exists for the Ogden model, but does not exist for the

neo-Hookean, Mooney–Rivlin or Gent model. This paper discusses how such a situation is changed when a

pressurized dielectric elastomer balloon is subjected to additional electric actuation. A similar bifurcation

condition is first deduced and then verified numerically by computing the bifurcated solutions explicitly. It is

shown that when the material is an ideal dielectric elastomer, bifurcation into a pear shape is possible for all

material models, and similar results are obtained when a typical non-ideal dielectric elastomer is considered.

It is further shown that whenever a pear-shaped configuration is possible it has lower total energy than the

co-existing spherical configuration.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Dielectric elastomers are now widely recognized as a high-tech

engineering material that has a variety of applications, ranging from

robotics where it is used as artificial muscles, to energy harvesting

where it is used to convert mechanical energy into electricity. They

have received a lot of attention since they were first reported (Fox

and Goulbourne, 2008; Kofod, 2008; Patrick et al., 2007; Pelrine and

Prahlad, 2008). A key question that is addressed by many recent stud-

ies is their shape bifurcation and its effect on the performance and

reliability of structures/devices made from such soft materials; see,

e.g., Plante and Dubowsky (2006), Bertoldi and Gei (2011), De Tom-

masi et al. (2013) and Dorfmann and Ogden (2014a), and the refer-

ences therein.

There are many types of configurations for the generators and

actuators made from dielectric elastomers, and one of them is the

spherical balloon shape (Artusi et al., 2011; Soleimani and Menon,

2010). A procedure was presented by Ahmadi et al. (2013) for

fabricating and testing a seamless spherical dielectric elastomer

balloon. Various aspects of the uniform inflation problem, such

as the so-called limiting-point instability, have been examined by
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Mockensturm and Goulbourne (2006), Zhu et al. (2010), He et al.

(2011), Rudykh et al. (2012), Keplinger et al. (2012), and Dorfmann

and Ogden (2014b). York et al. (2010) and De Tommasi et al. (2014)

studied the hysteresis effects commonly exhibited in such structures.

Since a spherical balloon is an important configuration in the ap-

plication of dielectric elastomers, it is also of interest to understand

whether shape bifurcation will take place when it is subjected to the

combined action of internal inflation and a voltage. When a mem-

brane balloon is under internal inflation alone, it is well known that

the spherical shape may bifurcate into a pear shape when the inter-

nal volume reaches a first critical value, and then return to a spheri-

cal shape at a second, higher critical value (Ericksen, 1998; Feodosev,

1968; Haughton and Ogden, 1978). Chen and Healey (1991) showed

that the pear-shaped configuration must necessarily have lower en-

ergy than the co-existing spherical configuration, and they also de-

rived some sufficient conditions under which the above bifurcation

behavior actually occurs for a general material model. Fu and Xie

(2014) analyzed the stability of the pear-shaped configuration itself

with respect to further axi-symmetric perturbations, and showed

that it is stable under mass or volume control but unstable under

pressure control. The well-known bifurcation condition in the purely

mechanical case was originally derived from the incremental theory

of nonlinear elasticity, but it was shown in Fu and Xie (2014) that

if attention is focused on axi-symmetric bifurcation modes then bi-

furcation can be detected by a simple shooting procedure based on

the original governing equations. It is this latter method that will
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Fig. 1. Undeformed and deformed configurations of a dielectric elastomer balloon un-

der both pressurized inflation and electric actuation.

be employed in the present paper. Our main objective is to under-

stand how adding electric actuation affects the appearance of the

pear-shaped configurations. We first extend the bifurcation condition

for the purely mechanical case in a straightforward manner, and then

verify that the extended bifurcation condition is indeed valid by using

the above-mentioned shooting procedure.

The remainder of this paper is organized as follows. Section 2

presents the governing equations for the axi-symmetric deforma-

tions of a dielectric elastomer spherical balloon. These equations are

then solved in Section 3 to find pear-shaped configurations that may

bifurcate from the spherical configuration, guided by the bifurca-

tion condition that was extended from its counterpart in the purely

mechanical case. The total energy is computed to demonstrate that

whenever a pear-shaped configuration can exist it is preferred to

the co-existing spherical configuration. We conclude the paper in

Section 4 with a discussion of how electric actuation based on differ-

ent material models affects the appearance of the pear-shaped con-

figurations.

2. Governing equations

Fig. 1 shows the upper half of a spherical balloon that is made

of a dielectric elastomer material and is subjected to both internal

inflation and electric actuation of the compliant electrodes attached

to the inner and outer surfaces. Without loss of generality, the initial

radius is assumed to be unity (which is equivalent to using the initial

radius as the unit of length), and so the undeformed configuration �

is described by

R(θ) = sin θ, Z(θ) = 1 − cos θ, 0 ≤ θ ≤ π

in terms of cylindrical polar coordinates. We focus on axi-symmetric

deformations (spherical or pear-shaped) described by

r = r(θ), z = z(θ), 0 ≤ θ ≤ π,

where (r, z) are cylindrical polar coordinates in the current configura-

tion (note that θ is not a polar coordinate; it is simply a parameter).

The principal stretches are given by

λ1 = r

R
, λ2 =

√
r′2 + z′2, λ3 = h

H
,

where a prime denotes differentiation with respect to θ , and H and

h are the thicknesses in the reference and deformed configurations,

respectively.

According to Dorfmann and Ogden (2005), the total energy den-

sity function Ŵ of an incompressible dielectric elastomer can be as-

sumed to be a function of the five invariants I1, I2, I4, I5, I6 defined

by

I1 = trC, I2 = trC−1, I4 = Dl · Dl,

I5 = Dl · CDl, I6 = Dl · C2Dl, (1)

where C (= F T F) is the right Cauchy–Green deformation tensor, F is

the deformation gradient, and Dl is the nominal electric displacement

which is related to the true electric displacement D by Dl = F−1D.

Following Dorfmann and Ogden (2014a), we shall consider the

following simplest constitutive law that accounts for electro-elastic

coupling:

Ŵ(λ1, λ2) = W(λ1, λ2) + 1

2
ε−1

0 (ξ I4 + ηI5), (2)

where W(λ1, λ2) is the strain–energy density function of the elas-

tomer per unit volume in the reference configuration, ε0 is the vac-

uum permittivity, and ξ , η are two dimensionless material constants

that characterize electroelastic coupling. The second term on the

right hand side of (2) denotes the free energy associated with po-

larization induced by the voltage. The above model reduces to that of

an ideal dielectric elastomer when ξ = 0 and η is equal to ε0 divided

by the permittivity; see, e.g., Zhao and Suo (2007).

The electric field E is computed from E = F−T ∂Ŵ/∂Dl , and is

given by

E = ε−1
0 (ξB−1D + ηD), (3)

where B = FF T . For the problem under consideration where a voltage

φ is specified, we have

E = φ

h
e3 = φ

H
λ1λ2e3,

where e3 denotes the unit vector normal to the membrane surface. It

then follows that:

D = εκ(λ1, λ2)E, I4 = μ�λ4
1λ

4
2εκ

2(λ1, λ2), I5 = (λ1λ2)
−2I4,

(4)

where

ε = ε0/(ξ + η), � = εφ2/
(
μH2

)
,

κ(λ1, λ2) = (ξ + η)/
(
ξλ2

1λ
2
2 + η

)
.

(5)

In the above expressions, the constants μ and ε denote the shear

modulus and permittivity when there is no deformation, whereas

the product εκ(λ1, λ2) may be interpreted as the deformation-

dependent permittivity corresponding to the simple model (2). It is

then appropriate to impose the inequalities 0 < ξ + η ≤ 1. We ob-

serve that in the subsequent analysis the ground state permittivity

ε will only appear through the non-dimensional parameter �, and ξ
and η will always appear in the form ξ /η.

With the application of both a voltage φ and inner pressure P, the

total free energy in the system takes the form

E =
∫
�

Ŵ(λ1, λ2)dV − Pv − φQ, (6)

where v is the volume enclosed by the inner surface of the deformed

balloon, and Q is the charge accumulated on each electrode. The Q

and v may be calculated using the formulae

Q =
∫


εκ(λ1, λ2)φ

h
da =

∫ π

0

εκ(λ1, λ2)φ

h
· 2π rλ2dθ,

v =
∫ π

0

π r2z′dθ,

where  denotes the current configuration of the inner surface. With

the use of these expressions and introduction of a new effective strain-

energy function W̃ defined by

W̃ ≡ μ−1Ŵ(λ1, λ2) − �κ(λ1, λ2)λ
2
1λ

2
2, (7)

Eq. (6) can be simplified to

E/(2πHμ) =
∫ π

0

L(u, u′)dθ, (8)

where u = (r(θ), z(θ)), and

L(u, u′) = W̃(λ1, λ2) sin θ − 1

2
P̄r2z′, P̄ = P/(μH). (9)
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