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a b s t r a c t

Transient dynamic stresses around three stacked parallel cracks in an infinite elastic plate are estimated for

an incident impact stress wave impinging normal to the cracks. Using Fourier and Laplace transform tech-

niques, the boundary conditions are reduced to six simultaneous integral equations in the Laplace domain.

The differences in the displacements inside the cracks are expanded in a series of functions that have zero

value outside the cracks. The Schmidt method is used to solve the unknown coefficients in the series such that

the conditions inside the cracks are satisfied. The stress intensity factors are defined in the Laplace domain,

and these are inverted using the numerical method. The stress intensity factors are calculated numerically

for some crack configurations.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Mechanical members are inevitably weakened by cracks. If a load

is suddenly applied to the members, then an estimate of the transient

stress intensity factors becomes important. Ravera and Sih (1970) es-

timated the Mode III dynamic stress intensity factor for a finite crack

in an infinite elastic medium under an impact incident stress wave.

Later, Sih et al. (1972) solved the corresponding Mode I and Mode II

stress intensity factors for a crack in an infinite elastic medium. Thau

and Lu (1971) used the Wiener–Hopf method to solve the dynamic

transient problem for a crack in an infinite medium. Their solutions

are exact from the moment an incident stress wave arrives at a crack

end, until a diffracted P wave reaches the opposite crack end, is re-

diffracted, and then returns to the original edge.

Materials are occasionally weakened by parallel cracks. In this

case, it is important to clarify the effect of these cracks on the tran-

sient dynamic stress intensity factors. Takakuda et al. (1984) esti-

mated the transient dynamic stress intensity factors for two stacked

parallel cracks in an infinite plane subjected to an impact anti-plane

shear stress wave. Itou (1995) solved the transient dynamic problem

for two parallel cracks in an infinite isotropic plate during the pas-

sage of impact shock stress waves. Furthermore, Itou (2015) also es-

timated the transient dynamic stress intensity factors for three par-

allel cracks, in which two collinear cracks were situated above the

lower center crack. Wu et al. (2015) obtained the Mode III dynamic

stress intensity factors for three stacked parallel cracks in an infinite
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medium. The materials are likely loaded by an impact normal stress

rather than anti-plane dynamic loading. Therefore, it is appropriate

to estimate the Mode I and II stress intensity factors for three stacked

parallel cracks under a normal incident impact stress.

In the present paper, the transient dynamic stresses are solved for

three stacked parallel cracks under an incident normal impact stress.

Using the Fourier transform, the mixed boundary value conditions

concerning the stress field are reduced to a set of dual integral equa-

tions in the Laplace domain. To solve these integral equations, the

differences in displacement at the upper, middle, and lower cracks

are expanded in a series of functions that have zero value outside

the cracks. Six sets of infinite series result from this process, each

of which contains an infinite number of unknown coefficients. Solv-

ing the unknown coefficients is a difficult task. In the previous work

(Itou, 2010), the corresponding time-harmonic stresses were solved

for three stacked parallel cracks in an infinite elastic plate during the

passage of time-harmonic stress waves propagating normal to the

cracks. Using the Schmidt method developed in Itou (2010), in the

present work the unknown coefficients in the six sets of infinite se-

ries are determined in the Laplace domain so that they satisfy the

conditions inside the three cracks.

As the stress intensity factors are defined in the Laplace domain,

they are inverted to the physical domain using Miller and Guy’s nu-

merical technique (1996). The stress intensity factors are calculated

numerically for several crack configurations.

2. Fundamental equations

Consider a crack in an infinite plate located along the x−axis from

−a to a at y = 0, with respect to the rectangular coordinates (x, y).
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Fig. 1. Geometry and coordinate system.

There is also an upper crack from −b to b at y = h1, and a lower

crack from −c to c at y = −h2. These cracks are shown in Fig. 1. For

convenience, 0 < y < h1 is referred to as layer (1), −h2 < y < 0 is

referred to as layer (2), h1 < y is referred to as the upper half-plane

(3), and y < −h2 is referred to as the lower half-plane (4).

Let u and v be defined as the x and y components of the displace-

ment, respectively. If the displacement components u and v are ex-

pressed by two functions ϕ (x, y, t ) and φ (x, y, t ) such that

u = ∂ ϕ /∂x − ∂ φ/∂ y, v = ∂ φ/∂x + ∂ ϕ/∂ y, (1)

then the equations of motion reduce to the following forms:

∂2 ϕ/∂x2 + ∂2 ϕ/∂y2 = 1/c2
L × ∂2 ϕ /∂ t2,

∂2 φ/∂x2 + ∂2 φ /∂y2 = 1/c2
T × ∂2 φ /∂ t2 (2)

where t is time. The dilatational wave velocity cL and the shear wave

velocity cT under plane stress conditions can be given as follows:

c 2
L = 2 μ/[(1 − ν)ρ] , c 2

T = μ/ρ. (3)

where μ is the modulus of rigidity, νis Poisson’s ratio, and ρ is the

density of the material.

The stresses can be expressed by the equations

τyy/(2μ) = − ∂2 ϕ/∂ x2 + κ2/(2c2
L )∂

2 ϕ /∂ t2 + ∂2 φ/∂ x ∂ y

τxx/(2μ) = − ∂2 ϕ/∂ y2 + κ2/(2c2
L )∂

2 ϕ /∂ t2 − ∂2 φ/∂ x ∂ y

τxy/(2μ) = ∂2 ϕ /∂ x ∂ y + ∂2 φ/∂ x2 − κ2/(2c2
L )∂

2 ϕ /∂ t2 (4)

with

κ2 = (cL/cT )
2 = 2/(1 − ν). (5)

The incident stress waves that propagate through the infinite plate

parallel to the y-axis in the negative direction are expressed as fol-

lows:

τ (inc)
yy = p H[t + (y − h1)/cL]

τ (inc)
xy = 0 (6)

where p is a constant and H(t) is the Heaviside unit function. We set

t = 0 when the wave front reaches the upper crack at y = h 1.

The boundary conditions for this problem can be expressed as

τy y 1 = τ y y 3, τ x y 1 = τ x y 3 at y = h1, |x| ≤ ∞ (7)

τy y 1 = τ y y 2, τ x y 1 = τ x y 2 at y = 0, |x| ≤ ∞ (8)

τy y 2 = τ y y 4, τ x y 2 = τ x y 4 at y = −h2, |x| ≤ ∞ (9)

τy y 1 = −p H[t], τ x y 1 = 0 at y = h1, |x| ≤ b (10.1)

u3 − u1 = 0, v3 − v1 = 0, at y = h1, b ≤ |x| (10.2)

τy y 1 = −pH[t − h1/cL] , τ x y 1 = 0 at y = 0, |x| ≤ a

(11.1)

u1 − u2 = 0, v1 − v2 = 0, at y = 0, a ≤ |x| (11.2)

τy y 2 = −p [t − (h1 + h2)/cL],

τ x y 2 = 0 at y = −h2, |x| ≤ c (12.1)

u2 − u4 = 0, v2 − v4 = 0, at y = −h2, c ≤ |x| (12.2)

where the subscript i ( = 1, 2) indicates the layer i, the subscript 3

indicates the upper half-plane (3), and the subscript 4 indicates the

lower half-plane (4).

3. Analysis

To obtain a solution, the following Laplace transforms are

introduced:

g∗(s) =
∫ ∞

0

g(t) exp ( − s t) dt,

g(t) = 1/(2 π i) ×
∫

B r.

g∗(s) exp (s t) ds (13)

as well as the following Fourier transforms:

f̄ (ξ) =
∫ ∞

−∞
f (x) exp (i ξ x) dx,

f (x) = 1/(2 π i) ×
∫ ∞

−∞
f̄ (ξ) exp ( − i ξ x) dξ . (14)

Applying Eqs. (13) and (14) to Eq. (2), we obtain:

d2ϕ̄∗/dy2 + γ 2
1 ϕ̄∗ = 0, d2φ̄∗/dy2 + γ 2

2 φ̄∗ = 0 (15)

with

γ1 =
√

ξ 2 + (s/cL)
2
, γ2 =

√
ξ 2 + (κ s/cL)

2
. (16)

For the layer i ( = 1, 2), the solutions of Eq. (15) have the follow-

ing forms:

ϕ̄∗
i = Ai sinh (γ1 y) + Bi cosh (γ1 y)

φ̄∗
i = Ci sinh (γ2 y) + Di cosh (γ2 y) (17)

where A i, B i, Ci, and Di are unknown coefficients. For the upper half-

plane (3) and the lower half-plane (4), the solutions of Eq. (15) have

the following forms in terms of the unknown coefficients C 3, D 3, C4,

and D4:

ϕ̄∗
3 = C3 exp ( − γ1 y)

φ̄∗
3 = D3 exp ( − γ2 y) (18)

ϕ̄∗
4 = C4 exp (γ1 y)

φ̄∗
4 = D4 exp (γ2 y). (19)

The stresses and displacements can be expressed by twelve

unknowns: A1, B1, C1, D1, A2, B2, C2, D2, C3, D3, C4, and D4. Using
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