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a b s t r a c t

A general solution is proposed to solve the plane problem for infinite anisotropic medium containing an
elliptic inhomogeneity with imperfect interface. The imperfect interface is usually described as a spring
model with vanishing thickness based on the assumption that the tractions are continuous but the nor-
mal or tangential displacements are discontinuous due to a jump at the interface. By means of the series
expansion of the complex stress functions and the factor functions for the imperfect elliptic interface, a
general procedure to determine the coefficients in the series is illustrated and the convergent solutions
are obtained by truncating finite number of terms in the series. The present solutions are verified with
available analytical results for the cases of perfect interface and debonded interface (or hole). The pat-
terns of the stresses in the anisotropic medium (or matrix) and inhomogeneity due to the eigenstrains
and far-filed stresses are presented, respectively. A sensitive interval of interface parameters is suggested,
in which the influence of the change of interface parameters on the stress field is very obvious. Monotonic
and non-monotonic change of peak stresses on a subset of interface parameters is also discussed. The
method and the procedure proposed in this work can be used in the analysis of strength and failure of
anisotropic materials containing an elliptic inhomogeneity with imperfect interface.

� 2015 Elsevier Ltd. All rights reserved.

1. Introduction

After Eshelby (1957, 1959, 1961) studied an inclusion problem
and provided a general solutions for the elastic field of isotropic
materials in the case of perfect interface between matrix and inclu-
sions in earlier years, many techniques such as Green function
method, Integral transform method and Stroh method have been
developed by researchers to solve the problems for materials con-
taining inhomogeneity (or inclusion). Numerous problems of
two-phase inhomogeneity/inclusion bonded within isotropic
materials have been investigated in the case of uniform or polyno-
mial form of eigenstrains in the inhomogeneity. Recently, the plane
problem for the polynomial eigenstrains in the elliptic inhomo-
geneity bonded within infinite anisotropic materials has been
studied by Nie et al. (2007, 2009, 2014), and some analytic results
for orthogonal anisotropic matrix containing an elliptic inhomo-
geneity with perfect interface was obtained based on the complex
function method and the principle of minimum strain energy.

For the imperfect interface, many models were presented and
studied by a lot of researchers such as Hashin (1991, 2002) and
Hashin and Monteiro (2002) and Benveniste and Miloh (2001).
One of them is the spring model with continuous condition for
the tractions and discontinuous condition for a jump in the normal
or tangential displacements, in which the jumps are linearly pro-
portional to their respective traction at the interface. Its influence
on the properties of materials has been receiving a lot of authors’
attention. However, most of the analytic results are limited to spe-
cial problems, such as isotropic matrix containing a circular inho-
mogeneity (or inclusion) with sliding interface (Ru, 1998) and
dislocation interface (Kattis and Providas, 1998).

Many researchers investigated the influence of changing
parameters of the imperfect interface on properties of materials
by using the semi-analytical analysis (Kushch and Chernobai,
2014; Wang et al., 2014) and the numerical simulations
(Würkner et al., 2013, 2014; Nairn, 2007). Numerous studies for
the influence on stresses in the constituents of materials were also
carried out by many researchers, for example, Shen et al. (2000,
2001a,b, 2005), Wang et al. (2005), Wang (2006), Ting and
Schiavone (2010), Nie and Huang (2009) as well as Chan et al.
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(2010), using the plane and anti-plane elasticity-based
semi-analytical and numerical analysis. Because a very simple
change of imperfect parameters is used in the analysis of the
results and the expansion terms in truncating the series for numer-
ical calculation is few, neither the sensitive interval nor is the
mechanism of the stress change very clear.

The general solution for anisotropic plane with perfectly
bonded elliptic inhomogeneity was obtained using Lekhnitskii’s
theory. The problem of imperfect bonded elliptic inhomogeneity
is considered in this work based on the theory. The interaction
on imperfect interface is simulated using the spring model with
a vanishing thickness, in which the continuous condition is
assumed for the traction and the discontinuous condition is
assumed for a jump in normal and tangential displacements.
Solution of the plane problem for the anisotropic medium contain-
ing an elliptic inhomogeneity is presented for the imperfect inter-
face. By means of the complex series expansion of the stress
functions and factor functions for the elliptic imperfect interface,
a general procedure for determining the coefficients in the series
is also presented. The series expansion of the factor functions

(HðlÞ; l ¼ 1; 2) could be used to solve some problems of inhomoge-
neous interface parameters for the spring model in the future
research. Introducing the governing equations for describing the
stress fields of the matrix and the inhomogeneity, resulting sets
of algebraic equations for the unknown coefficients are solved by
truncating finite number of terms in the series. Convergence of
the solutions is examined by truncating various terms in the series,
and the present solutions are verified with available analytical
results for the cases of perfect interface and debonded interface
(or hole). Detailed analysis is given for the influence of the inter-
face parameters on the whole stress field both due to eigenstrains
and far-field stresses, and a sensitive interval for the influence of
interface parameters on macro stress field is suggested for the
analysis of material property. Finally, the method and procedure
proposed in this paper can be used in the analysis of strength
and failure of anisotropic materials containing an elliptic inhomo-
geneity with imperfect interface.

2. Fundamental equations for plane problems

For the plane problem, two equilibrium equations without con-
sidering body forces will be satisfied by choosing a representation

rx ¼
@2F
@y2 ; ry ¼

@2F
@x2 ; sxy ¼ �

@2F
@x @y

; ð2:1Þ

where rx; ry and sxy are the components of stress, Fðx; yÞ is an arbi-
trary form called the Airy stress function.

For plane stress problem, the constitutive relations may be
expressed as

ex ¼ a11rx þ a12ry þ a16sxy

ey ¼ a12rx þ a22ry þ a26sxy

cxy ¼ a16rx þ a26ry þ a66sxy;

9>=
>; ð2:2Þ

where ex; ey and cxy are strain components. Substituting Eq. (2.2)
together with Eq. (2.1) into the compatibility equation, a solution
to the compatibility equation in terms of the stress function has
the form of

Fðx; yÞ ¼ F1ðxþ l1yÞ þ F2ðxþ l2yÞ þ F3ðxþ l3yÞ þ F4ðxþ l4yÞ;
ð2:3Þ

where li; i ¼ 1; . . . ;4; are four roots of the resulting characteristic
equation

a11l4 � 2a16l3 þ ð2a12 þ a66Þl2 � 2a26lþ a22 ¼ 0: ð2:4Þ

For ideal elastic materials, the four roots correspond to two
pairs of complex conjugates such that lk ¼ ak þ ibk,
ðbk > 0; k ¼ 1; 2Þ where ak and bk are real and imaginary parts
respectively, and l3 ¼ �l1; l4 ¼ �l2. The roots (lk; k ¼ 1; 2) are
two basic complex parameters characterizing the degree of aniso-
tropy. Eq. (2.3) can thus be expressed as

F ¼ 2Re
X2

k¼1

FkðzkÞ; ð2:5Þ

where

zk ¼ xþ lky; ðk ¼ 1;2Þ; ð2:6Þ

indicating two physical complex planes for anisotropic materials.
Introducing two generalized stress functions such that

ukðzkÞ ¼
dFk

dzk
; u0kðzkÞ ¼

duk

dzk
; ðk ¼ 1;2Þ; ð2:7Þ

then

@F
@x
¼ 2Re

X2

k¼1

ukðzkÞ;
@F
@y
¼ 2Re

X2

k¼1

lkukðzkÞ: ð2:8Þ

The stress and displacement components can be expressed as

rxðx; yÞ ¼ 2Re
X2

k¼1

l2
ku
0
kðzkÞ;

ryðx; yÞ ¼ 2Re
X2

k¼1

u0kðzkÞ;

sxyðx; yÞ ¼ �2Re
X2

k¼1

lku
0
kðzkÞ;

ð2:9Þ

and

uðx; yÞ ¼ 2Re
X2

k¼1

pkukðzkÞ;

vðx; yÞ ¼ 2Re
X2

k¼1

qkukðzkÞ;
ð2:10Þ

respectively, where

p1 ¼ a11l2
1 þ a12 � a16l1; p2 ¼ a11l2

2 þ a12 � a16l2;

q1 ¼ a12l1 þ
a22

l1
� a26; q2 ¼ a12l2 þ

a22

l2
� a26;

ð2:11Þ

in which p1;p2; q1; q2 are four complex coefficients.

3. Complex stress functions for infinite matrix with an elliptic
inhomogeneity

Suppose homogeneous, linear elastic and infinite anisotropic
medium (matrix) contains an elliptic inhomogeneity (or inclusion)
in plane elasticity, as shown in Fig. 1. Semi-major and semi-minor
axis of the elliptic inhomogeneity are denoted by a and b in the x
and y directions, respectively. The interface between the matrix
and inhomogeneity is denoted by C. e�x , e�y and c�xy are the eigen-
strains components in the inhomogeneity, and r1x , r1y and s1xy

are the remote uniform loadings in the matrix.
First, a complex plane (z-plane) with the real x-axis and the

orthogonal imaginary y-axis is established for the system of the
matrix and inhomogeneity shown in Fig. 1. Consider the transfor-

mation of an ellipse x2

a2 þ y2

b2 ¼ 1 on the complex z-plane for the inho-

mogeneity into the zk-plane with Zk ¼ xþ lky; k ¼ 1; 2, as shown
in Fig. 2(a). The region remains elliptic during the transformation
and becomes
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