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Anticracks (also known as rigid line inclusions) occur frequently in a variety of natural and engineered
composites as very stiff and extremely sharp (almost zero-thickness) fibers or lamellae embedded in a
softer matrix.

In the linear elastic regime, similarly to cracks, anticracks generate a singularity in the stress
distribution around the tip. Because of this similarity, existing analytical techniques and solutions (for

ieyyvordls: simple cases) can be easily translated to anticracks. However, despite their importance in many biological
Rintilgrl&i‘rclésinclusions and engineering composites, there has been surprisingly little development of numerical methods that
La%nellae would account simultaneously for the presence of multiple fibers or lamellae, arbitrary loadings and
Needles nonlinear behavior of the matrix.

Fibers This paper presents the first numerical approach for rigid line inclusions, based on a meshfree scheme
Platelets recently developed for multiple crack growth in elastic media. The inclusion of zero thickness is created
Fiber reorientation as a crack, and a rigid motion (rotation and translation) is enforced at the anticrack faces. The equations of
motion are solved according to a Total Lagrangian framework, and the matrix supposed hyperelastic.
Contrarily to available analytical solutions, the degrees of freedom of the rigid motion are determined a
posteriori as a consequence of the (discretized) elastic equilibrium, expressed in a variational approach.
Results show that the proposed approach match well the analytical solutions and provides accurate
stress intensity factors (SIFs) for relatively little computational cost. Moreover, the method can reproduce
some peculiar features of the anticracks: unlike cracks, singularities also appear under compressive and
parallel loads; moreover, for a certain combination of biaxial load, stress concentrations disappear.
Finally, the paper presents examples drawn from biological and engineering composites: the reorienta-
tion of one or more fibers under large strains, resulting in a smart stiffening and strengthening mechanism.
Reorienting towards the direction of applied load has structural importance since reinforcements can have
the most effectiveness in withstanding loads. If the matrix is compliant, the reorientation is eased.
© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

A rigid line inclusion (RLI) is a mathematical abstraction of an
extremely thin stiff inclusion dispersed within a matrix. The defini-
tion assumes the inclusion as infinitely rigid and zero-thickness.
Kinematically, this model consists in a surface of discontinuity (a
crack) where a rigid motion is imposed on all the material points
belonging to the upper and lower faces of the inclusion. For this
reason, some authors (Hurtado et al., 1996) refer to this model as
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an anticrack. However, in geology this terminology indicates some-
thing different: a classical Mode I crack displacement solution with
a reversed sign (Fletcher and Pollard, 1981), which in classical frac-
ture mechanics means a violation of the non-penetrability of the
crack faces. However, the justification is the dissolution and
removal of material when the anticrack surfaces move toward each
other, which is useful to explain triggering mechanism for snow
slab avalanches (Heierli et al.,, 2008) or shallow earthquakes
(Green et al., 1990; Burnley and Green, 1989). In RLI instead, the
impenetrability is automatically imposed by a rigid motion
common to both faces.

RLIs are useful to model the effects on the matrix of thin
reinforcements in form of fibers, platelets, needles or rods of
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characteristic sizes much smaller than that of the embedding
matrix. These reinforcements appear in many biological systems
and engineered nanocomposites. For example, in biological
systems (Pingle et al, 2008) like bones, teeth or nacre, the
reinforcement is usually in mineralized crystal form arranged in
a staggered disposition within a protein matrix. In calcified tissues,
(Landis, 1995), these fibers influence their strength, and the overall
effect is a tough nanocomposite (Ji and Gao, 2004; Pugno, 2006)
produced from very poor materials (Fratzl and Guille, 2011). In
engineered nanocomposites, RLIs appear as needle-like reinforce-
ments (Bilotti et al., 2008, 2009, 2010), nanowhiskers (Eichhorn
et al.,, 2010), nanoplatelets (Porwal et al., 2013b,a,c) and carbon
nanotubes (Nishimura and Liu, 2004).

Many theoretical papers are available in the literature for the
RLI problem, often encountered with different terminology, such
as line stiffener or anticrack, owed to its resemblance with a crack.
Most likely, this abundance is due to the application to RLI of
already well-known techniques at that time for 2D problems: for
instance, the Mushkelishvili solutions in terms of complex variable,
and the Wiener-Hopf technique, previously applied for crack
problems (Muskhelishvili, 1953).

Probably the first paper on RLI appeared in 1973 (Atkinson,
1973), with the term ribbon instead of rigid line inclusion. The scope
of this paper was to study the response of a metallic strain measur-
ing device in a rubber matrix. This paper presented firstly the solu-
tion for stresses in an elastic linear matrix due to a single isolated
rigid ribbon, and secondly the solution for the elastic ribbon. The
crack analogy is then exploited to obtain the solution for two col-
linear rigid inclusions, and finally, the interaction of a RLI with a
free boundary. Later, Brussat and Westmann (1975) proved the
correspondence between the Westergaard stress function for cracks
and a stress function for RLI, and subsequently, the relation
between their stress intensity factors (SIFs). Hasebe et al. (1984)
instead proposed a rational mapping function (again taken from
the elasticity of cracks) to analyze the stress state near a the tip
of a crack initiated from the tip of a RLI. Wang et al. (1985)
obtained the asymptotic expansion near the tip of a RLI (reported
in Section 2.2 of this paper) for both stress and strain fields. Chen
(1986) and later Stagni (1989) proved the path-independence of
the J-integral around the tip of a RLI, and found that the J-integral
for an anticrack is negative, rather than positive like in cracks.
Dundurs and Markenscoff (1989) and Ballarini (1987) reported a
full-field solution for the stresses in the matrix due to a RLI, respec-
tively using a weight function technique and an integral equation
approach, and later for a RLI at the interface of two dissimilar mate-
rials (Ballarini, 1990). Hurtado et al. (1996) introduced the term
anticrack for RLI and quasicracks for elastic line inclusion: they
obtained similar solutions to Atkinson (1973) starting from the
Eshelby’s ellipsoidal equivalent inclusion, for the limit to zero of
the ratio between the axes.

Despite the great amount of theoretical work produced over the
years, there was no attention to investigate experimentally the
stress distribution near a line stiffener, until 2008, when Dal
Corso et al. (2008) and Bigoni et al. (2008), and later Dal Corso
and Bigoni (2009) and Noselli et al. (2010) interestingly disclosed,
with photo-elasticity, the full-field stress state of an extremely thin
and stiff inclusion made of steel embedded in a transparent epoxy
matrix. They validated with their experiments some intriguing
aspects of the RLI problem, already known from the analytical solu-
tions: for instance, the appearance of a square root singularity also
for tensile loading parallel to the stiffener.

With the field of nanocomposites in rapid growth, it becomes of
paramount importance to develop numerical methods that
implement RLI models that could be used by materials scientists
and engineers to investigate the toughness properties of both
natural and man-made composites, or to imitate artificially the

hierarchical structures present in nature. This topic seems to have
been overlooked by researchers in numerical methods, with almost
absent literature in this field. It is worth to acknowledge the signif-
icant contributions of Radtke et al. (2010, 2011) where they
employ a Partition of Unity Finite Element Method (PUFEM) to
introduce short thin fibers in a cementitious matrix as a tunneling
crack with a finite very short thickness, not zero. The tunnel is
introduced as a two-dimensional Heaviside enrichment (1 inside
the fiber, 0 otherwise) over the span of the fiber. Instead, we intro-
duce an exactly zero thickness. Moreover, in these works it is not
reported any connections with a negative J-integral, nor compar-
isons with existing analytical solutions, whereas instead we make
use of the relation in Chen (1986) and a numerically computed
J-integral to validate our results in terms of stress intensity
factors.

Exploiting the strong relation with cracks, we used an idea
recently developed (Barbieri et al., 2012; Barbieri and Petrinic,
2013b,a) for fracture in a meshfree context: the aim is to create a
crack where the RLI is positioned, and then impose a rigid motion
at the (anti) cracks surfaces. The orientation of the inclusion can be
arbitrary inside the matrix, without restrictions imposed by the
underlying discretization of the matrix.

The structure of the paper is the following: Section 2 summa-
rizes the analytical solutions available in the literature, alongside
with the formulas for the extraction of the SIFs; Section 3 describes
the governing equations in strong and weak form and the ones
arising from their discretization; Section 4 presents the examples
for the validation of the method, comparison with analytical solu-
tions (full field and SIFs) and reorientation of fibers under a tensile
loading; finally, in Section 5 conclusions are drawn.

2. Analytical solutions, J-integral and stress intensity factors
2.1. Analytical solution

Atkinson (1973) derived an analytical solution for an horizontal
rigid line inclusion problem in an infinite isotropic elastic matrix
under uniform remote biaxial loading g3 and g;*. In the following,
the orthogonal reference has axis x aligned with the inclusion with
the origin in its middle point. The rigid line inclusion has length 2a.

Under uniform biaxial tension, and without the inclusion, the
matrix strains uniformly, with a displacements field given by

tg(x,Y) :$<(K+1)0;‘+(K—3)6‘;ﬁ) (1)
wo(ey) = g (K =3)77 + (4 1)) 2)
where « is

(3)

{ 3—4y plane strain
K=

3-v
1 Dlane stress

and p is the shear modulus and v is the Poisson ratio. The component
€40 Of the strain tensor given by

The line inclusion can only move rigidly. Hence, with the rigid line
inclusion now inserted in the matrix, and for the symmetry of the
problem, the motion is only translational in the horizontal direction
and with no rotation. For the compatibility of the displacements,
this translation must be equal to the displacement ug (1) at its tips
(x = +a, y = 0). In deriving the analytical solution, Atkinson, 1973
conveniently subtracted out the uniform strain of the matrix to
obtain zero stresses at infinity. Hence,
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