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a b s t r a c t

Sliding is a typical failure mode of composite interfaces. According to traditional theory, interfacial sliding
can be represented by the linear shear-spring model (LSSM). Although the required driving interfacial
shear stress has been characterized by LSSM, the relation between interfacial normal stress and sliding
is not yet reflected by it. The present paper proposes an interfacial sliding-prevention/promotion model
to consider the effect of interfacial normal stress on interfacial sliding. As an example of application, the
intra-layer fracture problem is analyzed on a bi-layered multiferroic ceramics. Green’s functions are
derived to construct the Cauchy singular integral equations, which are further numerically solved to
get mechanical strain energy release rate (MSERR) and interfacial normal stress. Parametric studies yield
a new finding that non-zero normal stress may be produced in local interfacial regions by intra-layer
cracks under pure in-plane shear. Local positive normal stress gives rise to local sliding-promotion effect,
while local negative normal stress leads to local sliding-prevention effect. The interfacial shear imperfec-
tion and local sliding-prevention/promotion constitute the mechanisms for the variation of MSERRs of
the two intra-layer cracks.

� 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Interfacial imperfection widely exists in composites due to
manufacturing process, fatigue damage and/or chemical action
(Lavrentyev and Rockhlin, 1998). Its modeling is significant for
the mechanical analyses and safety assessment of composite struc-
tures. In traditional theory, imperfect interfaces are generally for-
mulated by the linear spring model, which regards that stresses
are continuous, but displacements are discontinuous across the
interface. The interfacial imperfection is represented by the jumps
of displacements, and the interfacial stresses are assumed to be
proportional to the corresponding displacement jumps (Hashin,
1990, 1991, 2002; Benveniste and Miloh, 2001).

Interfacial imperfection will reduce the structural stiffness and
thus deteriorate the mechanical performances of composites.
Based on this consideration, researchers has done various investi-
gations on composites with imperfect interfaces in recent years.
Cheng et al. (1996) discussed the effect of interfacial imperfection
on the buckling and bending behaviors of composite laminates.
Icardi (1999) studied the effect of inter-laminar sliding imperfec-
tion on the free vibration response of composite beams exposed
to thermo-mechanical loading. Sudak et al. (1999) considered the

circumferentially inhomogeneous distribution of interfacial imper-
fections, and derived the rigorous solution of a circular inclusion
embedded in an infinite matrix in plane elasto-statics. Chen and
Lee (2004a) investigated a simply supported angle-ply laminate
with interfacial damage in cylindrical bending and free vibration
based on the state-space method in three-dimensional theory of
elasticity. Kovacs (2007) performed dynamic analysis on a lami-
nated band with imperfect interfaces, and got its free vibration
response under bending, shear and normal deformation. Nairn
(2007) implemented the spring-type model of imperfect interfaces
into both finite element analysis and the material point method
and validated the two numerical methods by comparison to exist-
ing results. Zhong et al. (2009a) performed fracture analysis on a
mode-I crack perpendicular to an imperfect interface, and revealed
the effect of interfacial imperfection on the fracture behavior.
Guessasma et al. (2010) derived the effective Young’s modulus of
biopolymer composites with imperfect interface. Kam and Kueh
(2013) proposed a finite element formulation to study the bending
of composite laminate plates, in presence of diagonally perturbed
interfacial degeneration. Massabo and Campi (2014) presented a
new mechanical model for multilayered beams/wide plates with
an arbitrary number of imperfect interfaces/delaminations in the
theoretical framework of the discrete-layer approach and affine
traction laws. Mishuris et al. (2006, 2014) presented the boundary
integral formulation for cracks at imperfect interfaces.
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Due to the wide applications of piezoelectric/piezomagnetic
devices in recent years, the imperfect interfaces in smart
composites have also drawn the attention of researchers. Because
piezoelectric/piezomagnetic composites have magneto-electro-
mechanical couplings, magnetic, electric and mechanical imperfec-
tions may simultaneously occur on their interfaces. In this case, the
traditional linear spring model is generalized to formulate the con-
stitutive behaviors of these three kinds of interfacial imperfections,
i.e., the magnitudes of stress, electric displacement and magnetic
induction are assumed to linearly depend on the jumps of mechan-
ical displacement, electric potential and magnetic potential,
respectively. Up till now, much effort has been devoted to the
investigation on piezoelectric/piezomagnetic composites with
imperfect interfaces. Chen and Lee (2004b) employed the state-
space approach to investigate the bending and free vibration of
simply supported angle-ply piezoelectric laminates in cylindrical
bending, and obtained the benchmark numerical results. Kim and
Lee (2008) also used the state-space formulation to survey the
buckling of an orthotropic piezoelectric rectangular laminate with
imperfect interfaces in the frame of three-dimensional theory of
elasticity. Fang et al. (2009) considered circular cross-section inclu-
sions embedded in piezoelectric solids with imperfect interfaces,
and analyzed the electro-elastic coupling interaction between a
piezoelectric screw dislocation and the inclusions. Zhou et al.
(2010) derived a semi-analytical solution for orthotropic piezoelec-
tric laminates in cylindrical bending with interfacial imperfections.
Fu and Li (2011) presented a non-linear model for laminated piezo-
electric plates with inter-laminar mechanical and electrical dam-
age based on the general six-degrees-of-freedom plate theory,
and discussed the effects of interfacial imperfections on the
inter-laminar stress and electric potential profiles. Gu and He
(2011) derived a general imperfect interface model for a 3D curved
thin interphase under the coupled multi-field condition by the
method of Taylor’s series expansion. Otero et al. carried out
continuous researches on the effects of interfacial imperfections
on interfacial waves between two piezoelectric half-spaces (Otero
et al., 2012), piezoelectric and piezomagnetic half-spaces (Otero
et al., 2013) and two magneto-electro-elastic half-spaces
(Otero et al., 2014), respectively. Kuo (2013) studied a piezoelectric
and piezomagnetic circular fibrous composite with imperfect
interfaces under longitudinal shear with in-plane electromagnetic
fields, and discussed the effects of interfacial imperfections on
the effective property. Wang et al. (2014) predicted the effective
elastic, dielectric, and piezoelectric properties of piezoelectric
composites with ellipsoidal particles embedded imperfectly in
the matrix by combining the dilute approximation method, the
Mori–Tanaka method and the self-consistent method. Shi et al.
(2014) considered the coupling between interfacial electric and
mechanical imperfections, and determined the variation bounds
for the effective electro-elastic moduli of piezoelectric particulate
composites with imperfect interfaces. McArthur and Sudak
(2015) rigorously analyzed an arbitrarily shaped piezoelectric
inclusion in an infinite piezoelectric matrix under anti-plane shear
deformation, and demonstrated the effects of the inclusion shape
and imperfect interface condition on the stress distribution. Li
et al. (2015a,b,c) proposed a new interfacial imperfection coupling
model, and applied it to fracture analyses on layered multiferroic
plates and cylinders consisting of alternate piezoelectric and
piezomagnetic layers.

For layered composites, interfacial sliding is a failure mode fre-
quently encountered in engineering. According to the linear spring
model, the required driving shear traction of a sliding interface is
linearly related to the sliding dislocation (Icardi, 1999). This rela-
tion is applicable to the cases that there is no normal stress across
the interface. However, interfacial normal stress may be non-
vanishing in many cases. The effect of interfacial normal stress

on the required driving shear traction of a sliding interface is still
an unsolved problem in this field. In this paper, an interfacial
sliding-prevention/promotion model is proposed to consider the
influence of interfacial normal stress on interfacial sliding. Then,
for the purpose of demonstration, the intra-layer crack problem
of a multiferroic composite is analyzed. The local non-vanishing
normal stress across the interface induced by the intra-layer cracks
are revealed, and the resulted phenomena of local sliding-
prevention and sliding-promotion are in return used to explain
the mechanism of intra-layer fracture.

2. Problem formulation

2.1. Geometrical model

Shown in Fig. 1 is the fracture model of a multiferroic composite
consisting of an upper ferromagnetic layer, a lower ferroelectric
one and an intermediate sliding interface. The thickness of the
interface is zero, and those of the two layers are h1 and h2. The
composite contains two cracks, each locating in a layer and parallel
to the interface. The half-lengths of the two cracks are a01 and a02,
and their distances from the interface are d1 and d2. Hereafter, the
quantities of the ferromagnetic layer are marked by subscript/su-
perscript 1, and those of the ferroelectric one are labeled by sub-
script/superscript 2. For the convenience of description, a
Cartesian coordinate system is set up in such a way that the right-
ward x-axis is along the interface, the upward z-axis follows the
direction of thickness, and the y -axis is determined by the right-
hand rule.

2.2. Basic equations

Assume that the composite is polarized along the z-axis. Then,
the magnetic/electric field in the xoz plane is coupled with the
deformation field therein, and the corresponding constitutive rela-
tions of the ferromagnetic and ferroelectric layers take the form
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where r, s, B and D are the normal stress, shear stress, magnetic
induction and electric displacement; u and w the corresponding
mechanical displacements in the directions of x and z axes; u and
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Fig. 1. Fracture model of a multiferroic composite containing a sliding interface.
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