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The recent advances in high-throughput omics technologies have enabled researchers to explore the intricacies
of the human microbiome. On the clinical front, the gut microbial community has been the focus of many
biomarker-discovery studies. While the recent deluge of high-throughput data in microbiome research has
been vastly informative and groundbreaking, we have yet to capture the full potential of omics-based ap-
proaches. Realizing the promise of multi-omics data will require integration of disparate omics data, as well as
a biologically relevant, mechanistic framework – or metabolic model – on which to overlay these data. Also, a
new paradigm for metabolic model evaluation is necessary. Herein, we outline the need for multi-omics data in-
tegration, as well as the accompanying challenges. Furthermore, we present a framework for characterizing the
ecology of the gut microbiome based on metabolic network modeling.

© 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

The promise of the Big Data revolution has yielded an ever-
increasing array of data and data types in many fields. In the medical
field, the sequencing of the human genome in 2003 opened the door
to truly individualized medicine, tailored to our genetic predispositions
and risk factors (Collins et al., 2003). The first manifestations of the Big

Data promise inmedicinewere necessarily surveys to identify biological
markers of disease risk.While this resulted in databases upon databases
of genetic events that explained risk behind hundreds of diseases, we
quickly learned that genetics alonewas not able to provide a full under-
standing of many health conditions (Lander, 2011). Researchers began
to examine other factors, including the role of environmental influences
such as the microbiome (Bultman, 2013; Zackular et al., 2013).

In 2008, the Human Microbiome Project (HMP) was established to
characterize the role of human-associated microbial communities in
human health and disease (Methé et al., 2012; The Human
Microbiome Project, 2012). Efforts led by the HMP consortium thus far
have yielded numerous insights regarding the microbial composition
of the human body and the ecological structure and function of the
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human microbiome. However, a shift from this “profiling” paradigm to
one of mechanistic examination is now both warranted and feasible
through the integration of multi-omics data onto a framework based
on biomolecular pathways and networks.

The gut microbial community is increasingly well-characterized by
various omics technologies – metagenomics, metatranscriptomics,
metabolomics, metaproteomics – and offers much promise for data in-
tegration within a mechanistic framework (Erickson et al., 2012;
Haiser et al., 2013a, 2013b;Weir et al., 2013). Gutmicrobes act as chem-
ical transformers, converting host-acquired or host-produced nutrients
into a milieu of metabolites (Lee and Hase, 2014). At the same time, the
structure and function of the microbial community respond to changes
in host diet or physiology (David et al., 2014; Kashyap et al., 2013; Liou
et al., 2013), making microbes both modulators and reflections of the
gut environment.

The gutmicrobiome contains over 3million genes, or approximately
150-fold more than the human genome (Qin et al., 2010); thus, it be-
comes virtually impossible to obtain more independent samples than
there are measured values within one individual's microbiome. The
large data sets generated by the most recent omics technologies call
for newmethods of analysis. No longer can we afford to use a paradigm
of statistical powerwhere our insight dwindles with the amount of data
we collect. Instead, we should rely on the fact that these variables are
not independent of one another and therefore establish amore practical
model for assessing the role of the microbiome.

A systems approach that utilizesmetabolic networksmay offer a po-
tential solution. Network reconstruction is one suchmeans of creating a
scaffold for synthesizing multiple data types (Feist and Palsson, 2008;
Lee et al., 2012; Reed et al., 2006; Töpfer et al., 2015). Metabolic models
are composed of a collection of individual chemical reactions that are
governed by the fundamental laws ofmass conservation and thermody-
namics. These models represent large-scale complex cellular dynamics
and imply a network whose mechanistic chain of events can be
computed to produce an outcome. Models are capable of converting
large amounts of data – genetic, metabolic, biochemical – into pheno-
types and interactions. The value ofmetabolicmodeling for understand-
ing the complex environment of the gut microbiome is in resolving
biochemical relationships within and between microbial species and
potentially predicting the effect of ecosystem-wide perturbations,
such as antibiotics or pathogen invasion. There have been many recent
efforts to model metabolic processes within microbial communities
(Heinken and Thiele, 2015; Henry et al., 2009). However, the wealth
of data available through multiple omics technologies remains
underutilized in these models.

In this review, we discuss the promises and limitations offered by
current mathematical paradigms for integrating disparate, yet comple-
mentary omics data, while pointing out the challenges that remain to
be resolved. Finally, we offer our viewpoint on the need for an updated
network-aware mathematical framework for statistical power — one
that synthesizes multiple channels of information into a biological
picture.

2. The Big Data paradox

Themathematical formalization of our knowledge is one of themost
important aspects of any scientific study or clinical trial. As a practical
tool, math is a means for taking pattern recognition and systematizing
it. It is also a way for us to provide some form of communication and
standard for comparing the results of different studies, and in the case
of statistical significance, is meant to provide a measure of certainty
against a null hypothesis.

Historically, clinical trials were developed around randomized treat-
ment arms that were designed to answer the question, “Which treat-
ment (A, B, or C) is better?” By selecting a straight forward metric,
such as survival outcomes, statisticians could compare the efficacy of
different treatments (Marubini and Valsecchi, 2004); however, this

precluded our ability to ask what would happen if we combined treat-
ment A and B, or B and C, or all 3 treatments, except by running yet an-
other clinical trial. At the center of these often long and laborious trials
was the notion of statistical power (Lachin, 1981). Just how many
cases and controls does oneneed to ensurewe can achieve significance?
It is a simple question, but an important one that has been the subject of
many sophisticated refinements. Here, there is a fundamental clash be-
tween Big Data science and classic clinical trial statistics. Paradoxically,
the more data we collect on each subject, the more we decrease our
likelihood of identifying statistically significant parameters as a result
of multiple hypothesis correction. This is a fundamental flaw in the
way that current statistical power calculations deal with large datasets.

Approaches to obtaining information from Big Data are different. Big
Data is characterized by high volume, variety, and velocity of data
generation (Costa, 2013). The strength of multi-omics is not merely
the observation of many data points, but the discovery of biological
mechanism through observation. Multi-omic Big Data grants us the
power to examine disease in a human biological context, rather than
extensively relying on murine models, which are limited in relevance
to the human gutmicrobiome (Nguyen et al., 2015). In order to succeed,
theBigDatamovement in individualizedmedicinewill require a holistic
merger between large-scale data and biological mechanism.

3. Metabolic models for Big Data synthesis

To identify specific biological markers of disease, many studies uti-
lize statistical correlations, which fall short of identifying underlying
mechanisms (de Vos and de Vos, 2012). In the past, using Big Data to
elucidate a biological mechanism involved generating a limited set of
hypotheses that were then tested in the lab. While this approach has
great value, it becomes less tenable as the number of measurements
grows. The massive data sets generated from high-throughput omics
technologies guarantee us more correlations arising purely from ran-
dom chance. In the gut microbiome, this is especially problematic. The
number of potential correlations increases with the hundreds of species
and thousands of genes. Furthermore, the number of identified factors
contributing to microbial composition including diet (David et al.,
2014; De Filippo et al., 2010; Turnbaugh et al., 2009), sex (Chen et al.,
2016), and even preservation method of the sample (Sinha et al.,
2015), continue to grow and make it more difficult to differentiate the
confounding from the causal.

A metabolic network provides a global picture of how metabolites
and biochemical reactions are interconnectedwithin a particular organ-
ism (Thiele and Palsson, 2010). Flux balance analysis on genome-scale
metabolic models (GEMs) can be used to simulate microbial growth
or to predict the production rate of a particular metabolite (Palsson,
2015). The power of this approach is not only that it recapitulates the
mechanistic chemical flow through an entire organism, but also that it
has the potential to integrate multiple data types. As the example
shown in Fig. 1 indicates, reactions can be linked to genes, which are
informed by DNA or RNA sequencing. RNA expression informs the
amount of flux a reaction can carry, and metabolomics is a direct mea-
surement of the metabolites. This makes metabolic models an ideal
platform for organismal and community-scale data synthesis.

Increasing evidence suggests that integrating disparate, but comple-
mentary, data types can increase the power of one's analysis. Examples
of this include the use ofwhole genome sequencing as a scaffold for RNA
data (J.Wang et al., 2013; K.Wang et al., 2013) and the use of phosphor-
ylation data to understand changes in metabolite concentration (Yugi
et al., 2014). Within the microbiome field,16S rRNA data is combined
with metagenomics to identify representative genomes and genome
characteristics (PICRUSt: Langille et al., 2013; HUMAnN: Abubucker
et al., 2012). Recent microbiome studies have also combined
metagenome and metatranscriptome data to enable comparison
between functional potential (metagenomic abundance/gene copy
number) and functional activity (transcriptome level) (Franzosa et al.,
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