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a b s t r a c t

The aim of this paper is to provide a homogenized criterion for porous ductile materials incorporating
both void shape and plastic anisotropy effects. This is done by extending recent criteria of Madou and
Leblond (2012a,b) for general ellipsoidal cavities in plastically isotropic matrices, and Monchiet et al.
(2008), Keralavarma and Benzerga (2010) for spheroidal cavities in plastically anisotropic matrices, to
general ellipsoidal cavities in plastically anisotropic matrices. A limit-analysis is performed of an ellip-
soidal representative volume made of some rigid-ideal-plastic Hill material, containing a confocal ellip-
soidal void and loaded under conditions of homogeneous boundary strain rate. Use is made in this
analysis of some trial incompressible velocity fields discovered by Leblond and Gologanu (2008), satisfy-
ing such conditions on an arbitrary family of confocal ellipsoids. Approximations resulting from asymp-
totic studies of the microscopic plastic dissipation near the void and at infinity lead to an analytic yield
function, the coefficients of which are not fully determined at this stage. Complete determination of these
coefficients is done using finite element simulations for hydrostatic loadings, on the one hand, and a rig-
orous bound of Ponte-Castaneda (1991), Willis (1991) and Michel and Suquet (1992) for nonlinear com-
posites for deviatoric loadings, on the other hand.

� 2015 Elsevier Ltd. All rights reserved.

1. Introduction

The most famous model for porous ductile materials is that of
Gurson (1977), which was obtained through limit-analysis of a
spherical representative cell made of a rigid-ideal-plastic von
Mises material, containing a concentric spherical void and sub-
jected to conditions of homogeneous boundary strain rate
(Mandel, 1964; Hill, 1967). Due to its intrinsic limitations to spher-
ical voids and plastically isotropic materials, several extensions of
this model have been proposed.

Since voids are often non-spherical in real materials, void shape
effects have been introduced by Gologanu et al. (1993, 1994, 1997)
by considering spheroidal voids. These authors thus performed a
limit-analysis of a spheroidal cell made of a von Mises material,
containing a confocal spheroidal void and subjected to conditions
of homogeneous boundary strain rate.1 A generalization of these
studies has been recently proposed by Madou and Leblond
(2012a,b) by considering arbitrary ellipsoidal cavities.

Another type of extensions considered plastically anisotropic
matrices obeying Hill (1948)’s orthotropic criterion instead of
von Mises’s isotropic one. Benzerga and Besson (2001) first per-
formed a limit-analysis of a spherical cell made of a Hill material
and containing a spherical void, using Gurson (1977)’s velocity
fields. Then Monchiet et al. (2006, 2008) and Keralavarma and
Benzerga (2008, 2010) considered spheroidal voids embedded in
a Hill matrix, using the velocity fields respectively considered by
Gologanu et al. (1993, 1994, 1997), which were discovered by
Lee and Mear (1992). All these studies devoted to plastically aniso-
tropic matrices therefore used the same trial velocity fields as
those previously considered for the isotropic case.

The aim of this paper is to define a Gurson-type criterion for
plastically anisotropic solids obeying Hill (1948)’s criterion, and
containing arbitrary ellipsoidal voids. This model will stand as an
extension of both Madou and Leblond (2012a,b)’s criterion because
the material will be considered to be anisotropic instead of isotro-
pic, and Monchiet et al. (2008), Keralavarma and Benzerga (2010)’s
criteria because the voids will be considered to be arbitrary ellip-
soidal instead of spheroidal.

To this end, we shall perform a limit-analysis of some general
ellipsoidal representative cell made of a rigid-ideal-plastic Hill
material, containing a confocal ellipsoidal void and loaded through
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1 Recently, Monchiet et al. (2014) studied the same problem by means of
Eshelby-like velocity fields.
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conditions of homogeneous boundary strain rate. This analysis will
use the same trial velocity fields as in the previous work of Madou
and Leblond (2012a,b), that is, those discovered by Leblond and
Gologanu (2008) and satisfying conditions of this type on an arbi-
trary family of confocal ellipsoids.

The paper is organized as follows:

� Section 2 presents the limit-analysis based on Madou and
Leblond (2012a,b)’s velocity fields. The output is a complex
integral expression of the macroscopic plastic dissipation.
� In Section 3, approximations are then made on the macroscopic

plastic dissipation, based on asymptotic studies of the micro-
scopic dissipation near the void and at infinity. This leads to
an approximate analytical yield function, the coefficients of
which are not fully determined at this stage.
� Section 4 presents the explicit determination of the parameters

appearing in one term of the yield function, based on finite ele-
ment micromechanical simulations.
� The parameters of the remainder of the yield function are next

determined in Section 5, using a bound for nonlinear compos-
ites derived by Ponte-Castaneda, 1991; Willis, 1991; Michel
and Suquet, 1992.
� Section 6 provides a summary of all relevant equations for ease

of reference.
� Finally Section 7 presents a brief assessment of the yield func-

tion through numerical finite element limit analysis.

2. Limit analysis of an ellipsoidal cell containing a confocal
ellipsoidal void

2.1. Limit-analysis procedure

Limit-analysis combined with the Hill–Mandel (Mandel, 1964;
Hill, 1967) homogenization theory is a convenient framework to
derive constitutive equations for porous ductile solids. Indeed, it
permits to effectively operate the scale transition by providing
microstructural information in the macroscopic constitutive
behavior.

Consider a representative volume element (RVE) in a porous
ductile solid denoted X and containing a void denoted x. The
macroscopic yield locus of the porous material can be determined
using the upper-bound theorem of limit-analysis (see e.g. Benzerga
and Leblond, 2010). The fundamental inequality of this approach

R : D 6 PðDÞ ð1Þ

leads to the parametric equation of the yield locus

R ¼ @P
@D
ðDÞ ð2Þ

where the macroscopic stress and strain rate tensors R and D are
defined as the volume averages of their microscopic counterparts
r and d. The macroscopic plastic dissipation PðDÞ in Eqs. (1) and
(2) is defined by:

PðDÞ ¼ inf
v2KðDÞ

hsup
r�2C

; r� : d iX�x ð3Þ

where C is the microscopic convex domain of reversibility and the
set KðDÞ consists of velocity fields v kinematically admissible with
D and verifying the property of incompressibility.

2.2. Presentation of the cell

We consider an ellipsoidal cell containing a confocal ellipsoidal
void and loaded arbitrarily through conditions of homogeneous
boundary strain rate (Mandel, 1964; Hill, 1967). We briefly recall

the notations used by Madou and Leblond (2012a) to describe such
a cell.

The semi-axes of the inner ellipsoid (the boundary of the void),
parallel to the unit vectors ex; ey; ez, are denoted a; b; c (a > b > c)
while those of the outer one (the boundary of the cell) are denoted
A;B;C (A > B > C). These two ellipsoids are related through the

confocality conditions A2 � a2 ¼ B2 � b2 ¼ C2 � c2. Their volumes
are 4p

3 x and 4p
3 X where

x � abc; X � ABC; ð4Þ

and the porosity is f � x
X.

Some elements pertaining to the ellipsoidal coordinated k;l; m
associated to the triplet ða; b; cÞ are provided in Appendix A. In
particular, the coordinate k (which plays the same role as r for
spherical coordinates) takes the value k � 0 on the inner ellipsoid
E0 and k � K on the outer one EK. The semi-axes A;B;C of EK are
related to those, a; b; c, of E0 plus the parameter K through the
relations

A �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þK

p
; B �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 þK

q
; C �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2 þK

p
: ð5Þ

It then follows from Eqs. (4) and (5) that the parameter K is deter-
mined by the following third-degree polynomial equation:

a2 þK
� �

b2 þK
� �

c2 þK
� �

� a2b2c2

f 2 ¼ 0: ð6Þ

The completely flat ellipsoid confocal with E0 and EK will play an
important role in the sequel. Its semi-axes �a; �b; �c are given by

�a �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � c2
p

; �b �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 � c2

q
; �c � 0: ð7Þ

The family of confocal ellipsoids Ek may then be characterized by
the single dimensionless parameter

k �
�b
�a
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 � c2

a2 � c2

s
ð8Þ

or the related one

k0 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� k2

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � b2

a2 � c2

s
: ð9Þ

Note that the ellipsoids Ek are prolate spheroids if ðk; k0Þ ¼ ð0;1Þ,
and oblate spheroids if ðk; k0Þ ¼ ð1; 0Þ.

2.3. Hill (1948)’s anisotropic criterion

We assume that the matrix is rigid-plastic and obeys Hill
(1948)’s orthotropic yield criterion. The basis of orthotropy is
denoted ðe�1; e�2; e�3Þ and is not supposed to coincide with the princi-
pal basis ðex; ey; ezÞ of the cavity.

Let us denote by ~r and ~r� the Voigt-type vector representations,
generally used in finite element codes, of the local stress tensor r
in the bases ðex; ey; ezÞ and ðe�1; e�2; e�3Þ, respectively:

~r �

~r1

~r2

~r3

~r4

~r5

~r6

0
BBBBBBBBB@

1
CCCCCCCCCA
�

rxx

ryy

rzz

rxy

rxz

ryz

0
BBBBBBBBB@

1
CCCCCCCCCA

; ~r� �

~r�1
~r�2
~r�3
~r�4
~r�5
~r�6

0
BBBBBBBBB@

1
CCCCCCCCCA
�

r�11

r�22

r�33

r�12

r�13

r�23

0
BBBBBBBBB@

1
CCCCCCCCCA
: ð10Þ

Also, let ~d and ~d� denote those of the local strain rate tensor d in the
same bases:
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